Publicación:
Desarrollo de un concreto tipo UHPC/UHPFRC con alto volumen de vidrio reciclado y cemento disponible localmente

dc.contributor.authorMosquera, Jesus
dc.contributor.authorDe la Hoz Navas, Albert
dc.contributor.authorCastillo Suárez, Luis Manuel
dc.coverage.spatialDistrito turistico y cultural de Riohacha
dc.date.accessioned2025-07-15T14:11:20Z
dc.date.available2025-07-15T14:11:20Z
dc.date.issued2023
dc.descriptionIncluye índice de tablas y figurasspa
dc.description.abstractEl avance de las investigaciones dirigidas a la creación de nuevos materiales para la construcción ha dado lugar a la emergencia del concreto de ultra altas prestacio nes (UHPC, por sus siglas en inglés). A pesar de que la resistencia a la compresión de estos concretos supera o iguala los 120 MPa según la norma ASTM, exhiben una fragilidad propia si no se dosifican adecuadamente con fibras, dando lugar a los concretos de ultra altas prestaciones reforzadas con fibras (UHPFRC, por sus siglas en inglés). Así, el concreto UHPC/UHPFRC se revela como un material dotado de propiedades mecánicas y de durabilidad excepcionales, fundamentando su rendi miento en una matriz altamente densificada y una porosidad mínima. No obstante, varios componentes característicos del UHPC/UHPFRC implican un costo elevado en la formulación de la mezcla, tal es el caso del humo de sílice y las fibras metá licas, mientras que otros, como la arena fina de cuarzo y el polvo de cuarzo cris talino, conllevan riesgos potenciales de carcinogenicidad. Este escenario motiva la exploración de materiales alternativos que puedan no solo reducir el costo final del producto, sino también mitigar los riesgos para la salud y disminuir el impacto ambiental, especialmente si se incorporan materiales reciclados. En países como Colombia, la obtención de un concreto con bajo contenido de aluminato tricálcico (C3A) se presenta como un desafío, dificultando la obtención de resistencias ultra altas. Además, la introducción de un nuevo agregado basado en vidrio reciclado exige la realización de ensayos que posibiliten la evaluación de posibles reacciones entre los álcalis presentes y la sílice inestable de los nuevos agregados empleados (ASR). La motivación principal de la presente investigación radica en la necesidad de desarrollar una mezcla del tipo concreto de ultra altas prestaciones (UHPC) que cumpla con los parámetros establecidos por la norma ASTM C1856. Este proceso de optimización tiene como criterios fundamentales el empleo máximo de vidrio reciclado tanto, como agregado, como cemento, la mi nimización de la cantidad de cemento y la incorporación óptima de humo de sílice para prevenir la expansión de ASR. Para cumplir con estos objetivos, se diseñaron dosificaciones que incluyan 1%, 2% y 3% de fibras en volumen para fortalecer la mezcla UHPC optimizada. Las fibras empleadas en el análisis comprendieron fibras comerciales de polipropileno/polietileno, fibras de acero con extremos conforma dos en gancho, y fibras de polietileno reciclado. Con el fin de verificar y alcanzar los objetivos propuestos, se realizaron a cabo ensayos de resistencia a la compre sión, cuantificación de la expansión ASR mediante el método de la barra acelerada y ensayos de flexión de tres puntos Los resultados del presente estudio indican que la utilización de vidrio reciclado con un tamaño de partículas inferior a 1 milímetro no resultó suficiente para preve nir la expansión de la reacción álcali-sílice (ASR), ya que en este trabajo se necesitó una dosificación de 155 kg./m3 de humo de sílice para inhibir la ocurrencia de esta reacción. El proceso de optimización llevado a cabo permitió la formulación de un Concreto de Ultra Altas Prestaciones (UHPC) con una dosis de vidrio reciclado que representó el 52% de su masa total, cumpliendo simultáneamente con los requi sitos de resistencia a la compresión establecidos por la norma. ASTM. En relación con las probetas de Concreto Reforzado con Fibras de Ultra Altas Prestaciones (UHPFRC), se controlará que aquellas reforzadas con 1%, 2% y 3% de fibras metá licas con extremos en forma de gancho exhibieron un destacado comportamiento a flexión. De manera similar, las sondas reforzadas con 2% y 3% de fibras comer ciales poliméricas de polipropileno/ polietileno presentaron un desempeño sobre saliente en términos de flexión. No obstante, las probetas de UHPFRC reforzadas con fibras recicladas no lograrán alcanzar un comportamiento adecuado a flexión en ninguna de las dosificaciones evaluadas. En lo que respecto a la capacidad de absorción de energía, se destacó que las sondas reforzadas con 2% de fibras de polipropileno/polietileno en volumen exhibieron una energía absorbida un 69% superior en comparación con las sondas reforzadas con 2% de fibras metálicas y un aumento del 43% en comparación con las sondas reforzadas con 3% de fibras metálicas en volumen.spa
dc.description.editionPrimera edición
dc.description.notesIncluye fotografias a color y tablasspa
dc.description.tableofcontentsResumen Introducción Fundamentos de los concretos tipo UHPC/UHPFRC Conceptos básicos Componentes del UHPFRC Propiedades mecánicas del UHPFRC Reacciones químicas del vidrio reciclado como componte del concreto Estado del arte Producción del residuo de vidrio Vidrio reciclado como componente del UHPC Medidas para mitigar la reacción álcali-sílice Antecedentes del comportamiento a flexión del UHPFRC Antecedentes del UHPFRC con vidrio reciclado Propósitos de la investigación General Programa experimental Teoría de empaquetamiento de partículas Metodología Metodología analítica. Procedimiento de mezclado para los ensayos de la fase 1 Procedimiento de mezclado para los ensayos de flexión . Ensayos Materiales Resultados y análisis Resultados fase 1 Resultados fase 2 Diseño central compuesto y resultados experimentales de la fase 3 Resultados de la optimización multiobjetivo y validación experimental de la fase 3 Resultados de la fase 4 Conclusiones y recomendaciones Conclusiones Bibliografía Resistencia a la compresión Cálculo de la resistencia a la compresión del UHPC durante la fase 2 y fase 3 . Comportamiento a flexión . Cálculo de la resistencia a la flexión del UHPFRC Cálculo de la energía del UHPFRC que presentó endurecimiento por deflexión Informe de resultados del ensayo a tracción de las fibras de polietileno reciclado Montaje y realización del ensayo a tracción de las fibras de polietileno recicladas Fichas técnicas de los superplastificantes y fibras comerciales usadasspa
dc.format.extent173 Páginas
dc.format.mimetypeapplication/pdf
dc.identifier.isbn978-628-7718-93-7
dc.identifier.urihttps://repositoryinst.uniguajira.edu.co/handle/uniguajira/1638
dc.language.isospa
dc.publisherUniversidad de La Guajira
dc.publisher.placeDistrito Especial, Turístico y Cultural de Riohacha
dc.relation.referencesAmerican Society for Testing and Materials (ASTM), “C1856/C1856M-17: Standard practice for fabricating and testing specimens of ultra-high performance.” ASTM International, West Conshohocken, PA, 201
dc.relation.referencesJ. Li y Z. Deng, “Tensile Behavior of Hybrid Fiber-Reinforced Ultra-High-Performance Concrete”, Front. Mater., vol. 8, núm. November, pp. 1–14, 2021, doi: 10.3389/ fmats.2021.769579
dc.relation.referencesAbellán-García, J. S. Guzmán-Guzmán, J. A. Sánchez-Díaz, y J. Rojas-Grillo, “Experimental validation of Artificial Intelligence model for the energy absorption capacity of UHPFRC”, Dyna, vol. 88, núm. 217, pp. 150–159, 2021, doi: https:// doi.org/10.15446/dyna.v88n217.
dc.relation.referencesY. Deng, Z. Zhang, C. Shi, Z. Wu, y C. Zhang, “Steel fiber–matrix interfacial bond in ultra-high performance concrete: A review”, Engineering, 2022, doi: 10.1016/j. eng.2021.11.019.
dc.relation.referencesT. Chen, X. Gao, y M. Ren, “Effects of autoclave curing and fly ash on mechanical properties of ultra-high performance concrete”, Constr. Build. Mater., vol. 158, núm. January, pp. 864–872, 2018, doi: 10.1016/j.conbuildmat.2017.10.074.
dc.relation.referencesJ. C. Scheydt y H. S. Müller, “Microstructure of ultra high performance concrete (UPHC) and its impact on durability”, en Proceedings of Hipermat 2012 - 3rd International Symposium on UHPC and Nanotechnology for Construction Materials, Kassel, Germany, 2012, pp. 349–356
dc.relation.referencesW. Li, Z. Huang, T. Zu, C. Shi, W. H. Duan, y S. P. Shah, “Influence of Nanolimestone on the Hydration, Mechanical Strength , and Autogenous Shrinkage of Ultrahigh Performance Concrete”, J. Mater. Civ. Eng., vol. 28, núm. 1, pp. 1–9, 2016, doi: 10.1061/(ASCE)MT.1943-5533.0001327.
dc.relation.referencesC. Shi, Z. Wu, J. Xiao, D. Wang, Z. Huang, y Z. Fang, “A review on ultra high performance concrete: Part I. Raw materials and mixture design”, Constr. Build. Mater., vol. 101, núm. October, pp. 741–751, 2015, doi: 10.1016/j.conbuildmat.2015.10.088.
dc.relation.referencesJ. Abellán-García y E. García-Castaño, “Development and Research on Ultra-High Performance Concrete Dosages in Colombia: A Review”, ACI Mater. J., vol. 119, núm. 3, pp. 209–221, 2022, doi: 10.14359/51734617.
dc.relation.referencesD. Wang, C. Shi, Z. Wu, J. Xiao, Z. Huang, y Z. Fang, “A review on ultra high performance concrete: Part II. Hydration, microstructure and properties”, Constr. Build. Mater., vol. 96, pp. 368–377, oct. 2015, doi: 10.1016/j.conbuildmat.2015.08.095.
dc.relation.referencesJ. Abellán-García, “Dosage optimization and seismic retrofitting applications of Ultra-HighPerformance Fiber Reinforced Concrete (UHPFRC)”, PhD dissertation, Polytechnic University of Madrid, 2020.
dc.relation.referencesC.-C. Hung, S. El-Tawil, y S.-H. Chao, “A Review of Developments and Challenges for UHPC in Structural Engineering: Behavior, Analysis, and Design”, J. Struct. Eng., vol. 147, núm. 9, pp. 1–19, 2021, doi: 10.1061/(asce)st.1943-541x.0003073.
dc.relation.referencesA. Tagnit-Hamou, N. A. Soliman, y A. Omran, “Green Ultra - High - Performance Glass Concrete”, First Int. Interact. Symp. UHPC – 2016, vol. 3, núm. 1, pp. 1–10, 2016.
dc.relation.referencesJ. Abellán-García, “Neural network-based prediction of 7-days compressive strength of UHPC incorporating SCM”, Rev. Mater., vol. 26, núm. 4, 2021, doi: 10.1590/S1517-707620210004.1380.
dc.relation.referencesI. Ferdosian, A. Camões, y M. Ribeiro, “High-volume fly ash paste for developing ultra-high performance concrete (UHPC)”, Cienc. E Tecnol. Mater., vol. 29, núm. 1, pp. e157–e161, 2017, doi: 10.1016/j.ctmat.2016.10.001
dc.relation.referencesS. Park, S. Wu, Z. Liu, y S. Pyo, “The role of supplementary cementitious materials (Scms) in ultra high performance concrete (uhpc): A review”, Materials, vol. 14, núm. 6, pp. 1–24, 2021, doi: 10.3390/ma14061472
dc.relation.referencesM. Amin, A. M. Zeyad, B. A. Tayeh, y I. Saad Agwa, “Effects of nano cotton stalk and palm leaf ashes on ultrahigh-performance concrete properties incorporating recycled concrete aggregates”, Constr. Build. Mater., vol. 302, núm. April, p. 124196, 2021, doi: 10.1016/j.conbuildmat.2021.124196.
dc.relation.referencesH. Huang, X. Gao, H. Wang, y H. Ye, “Influence of rice husk ash on strength and permeability of ultra-high performance concrete”, Constr. Build. Mater., vol. 149, pp. 621–628, 2017, doi: 10.1016/j.conbuildmat.2017.05.155.
dc.relation.referencesEtsuo Sakai y N. Akinori, “Influence of superplasticizers on the fluidity of cements with different amount of aluminate phase”, Kassel (Alemania), 2008, pp. 85–92.
dc.relation.referencesN. A. Soliman y A. Tagnit-Hamou, “Using glass sand as an alternative for quartz sand in UHPC”, Constr. Build. Mater., vol. 145, pp. 243–252, 2017, doi: 10.1016/j. conbuildmat.2017.03.187
dc.relation.referencesN. A. Soliman y A. Tagnit-Hamou, “Using particle packing and statistical approach to optimize eco-efficient ultra-high-performance concrete”, ACI Mater. J., vol. 114, núm. 6, pp. 847–858, 2017, doi: 10.14359/51701001
dc.relation.referencesD. J. Kim, A. Naaman, y S. El-Tawil, “High tensile strength strain-hardening FRC composites with less than 2% fiber content”, en Structural Materials and Engineering Series, Second Int., Kassel: University of Kassel, Germany, 2008, pp. 169–176
dc.relation.referencesJ. Abellán, N. Torres, A. Núñez, y J. Fernández, “Concretos de muy altas prestaciones reforzados con fibras: estado del arte, aplicaciones y posibilidades en el mercado latinoamericano. Ultra high performance fiber reinforced concrete: state of the art, applications and possibilities into the latin american market”, p. 11
dc.relation.referencesC. Shi, Z. Wu, J. Xiao, D. Wang, Z. Huang, y Z. Fang, “A review on ultra high performance concrete: Part I. Raw materials and mixture design”, Constr. Build. Mater., vol. 101, pp. 741–751, dic. 2015, doi: 10.1016/j.conbuildmat.2015.10.088
dc.relation.referencesJ. Abellán-García, “Artificial Neural Network Model for Strength Prediction of Ultra High-Performance Concrete”, ACI Mater. J., vol. 118, núm. 4, pp. 3–14, 2021, doi: 10.14359/51732710.
dc.relation.referencesH. Hamada, A. Alattar, B. Tayeh, F. Yahaya, y B. Thomas, “Effect of recycled waste glass on the properties of high-performance concrete: A critical review”, Case Stud. Constr. Mater., vol. 17, núm. May, p. e01149, 2022, doi: 10.1016/j.cscm.2022. e01149
dc.relation.referencesC. Shi y K. Zheng, “A review on the use of waste glasses in the production of cement and concrete”, Resour. Conserv. Recycl., vol. 52, núm. 2, pp. 234–247, 2007, doi: 10.1016/j.resconrec.2007.01.013
dc.relation.referencesD. R. Lankard, “Slurry infiltrated fiber concrete (SIFCON): Properties and applications”, Materials Research Society, vol. 42, p. 10, 1984
dc.relation.referencesP. Richard y M. Cheyrezy, “Composition of reactive powder concretes”, Cement and Concrete Research, vol. 25, núm. 7, p. 11, 1995, doi: 0008-8846(95)00144-1.
dc.relation.referencesA. Quennoz, “Hydration of C3A with Calcium Sulfate Alone and in the Presence of Calcium Silicate”, PhD Thesis, École Polytechnique Fédérale de Lausanne, 2011.
dc.relation.referencesA. P. Kirchheim, V. Fernàndez-Altable, P. J. M. Monteiro, D. C. C. Dal Molin, y I. Casanova, “Analysis of cubic and orthorhombic C3A hydration in presence of gypsum and lime”, J. Mater. Sci., vol. 44, núm. 8, pp. 2038–2045, abr. 2009, doi: 10.1007/s10853-009-3292-3.
dc.relation.referencesC. G. Hernández-Carrillo, N. V. Torres-Rubio, y J. A. Sarmiento-Rojas, “Evaluation of specified and manufactured Colombian commercial cements by performance”, J. Phys. Conf. Ser., vol. 2046, núm. 1, pp. 1–7, 2021, doi: 10.1088/1742 6596/2046/1/012048.
dc.relation.referencesM. Yudenfreund, I. Odler, y S. Brunauer, “Hardened portland cement pastes of low porosity I. Materials and experimental methods”, Cem. Concr. Res., vol. 2, núm. 3, pp. 313–330, may 1972, doi: 10.1016/0008-8846(72)90073-7
dc.relation.referencesD. M. Roy, G. R. Gouda, y A. Bobrowsky, “Very high strength cement pastes prepared by hot pressing and other high pressure techniques”, Cem. Concr. Res., vol. 2, núm. 3, pp. 349–366, may 1972, doi: 10.1016/0008-8846(72)90075-0
dc.relation.referencesBache, H H, “Densified cement ultra-fine particle-based materials”, Conf. 2 Int. Conf. Superplast. Concr. Canada10-12 Jun, p. 35 p., 1981.
dc.relation.referencesBirchall, J., Howard, A. & Kendall, K. Flexural strength and porosity of cements. Nature 289, 388–390 (1981). https://doi.org/10.1038/289388a0”.
dc.relation.referencesR. Yu, P. Tang, P. Spiesz, y H. J. H. Brouwers, “A study of multiple effects of nano-silica and hybrid fibres on the properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) incorporating waste bottom ash (WBA)”, Constr. Build. Mater., vol. 60, pp. 98–110, jun. 2014, doi: 10.1016/j.conbuildmat.2014.02.059
dc.relation.referencesM. G. Sohail et al., “Advancements in Concrete Mix Designs: High-Performance and Ultrahigh-Performance Concretes from 1970 to 2016”, J. Mater. Civ. Eng., vol. 30, núm. 3, p. 04017310, 2018, doi: 10.1061/(ASCE)MT.1943-5533.0002144.
dc.relation.referencesR. D. Lequesne, “Behavior and Design of High-Performance Fiber-Reinforced Concrete Coupling Beams and Coupled-Wall Systems by”, 2011.
dc.relation.referencesR. M. Vasconez, A. E. Naaman, y J. K. Wight, “Behavior of HPFRC Connections for Precast Concrete Frames Under Reversed Cyclic Loading”, PCI J., vol. 43, núm. 6, pp. 58–71, 2014, doi: 10.15554/pcij.11011998.58.71.
dc.relation.referencesA. a Al-azzawi, A. S. Ali, y H. K. Risan, “Behavior of Ultra High Performance Concrete Structures”, ARPN J. Eng. Appl. Sci., vol. 6, núm. 5, pp. 95–109, 2011
dc.relation.referencesD. J. Kim, S. H. Park, G. S. Ryu, y K. T. Koh, “Comparative flexural behavior of Hybrid Ultra High Performance Fiber Reinforced Concrete with different macro fibers”, Constr. Build. Mater., vol. 25, núm. 11, pp. 4144–4155, nov. 2011, doi: 10.1016/j. conbuildmat.2011.04.051.
dc.relation.referencesR. Yu, P. Spiesz, y H. J. H. Brouwers, “Development of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Towards an efficient utilization of binders and fibres”, Constr. Build. Mater., vol. 79, pp. 273–282, mar. 2015, doi: 10.1016/j. conbuildmat.2015.01.050
dc.relation.referencesD. Wang, C. Shi, Z. Wu, J. Xiao, Z. Huang, y Z. Fang, “Durability of an ultra high performance fiber reinforced concrete (UHPFRC) under progressive aging”, Cem. Concr. Res., núm. 55, 2015.
dc.relation.referencesJ. Abellan-Garcia, “Tensile behavior of recycled-glass-UHPC under direct tensile loading”, Case Stud. Constr. Mater., vol. 17, núm. May, pp. 1–16, 2022, doi: 10.1016/j. cscm.2022.e01308
dc.relation.referencesS. Ros, L. M. J. Ángel, y C. Torregrosa, “UHPFRC: De los componentes a la estructura”, p. 21.
dc.relation.referencesACI Committe 239R, “Ultra-high-performance concrete: An emerging technology report”. American Concrete Institute, 2018
dc.relation.referencesC. M. Tam, V. W. Y. Tam, y K. M. Ng, “Assessing drying shrinkage and water permeability of reactive powder concrete produced in Hong Kong”, Constr. Build. Mater., vol. 26, núm. 1, pp. 79–89, ene. 2012, doi: 10.1016/j.conbuildmat.2011.05.006.
dc.relation.referencesA. E. Naaman y H. W. Reinhardt, “Proposed classification of HPFRC composites based on their tensile response”, Mater. Struct., vol. 39, núm. 5, pp. 547–555, ago. 2007, doi: 10.1617/s11527-006-9103-2.
dc.relation.referencesD. J. A. Marín y D. C. P. Costa, “UHPC CON MULTIFISURACIÓN”, p. 83.
dc.relation.referencesJ.-S. Park, Y. Kim, J.-R. Cho, y S.-J. Jeon, “Early-Age Strength of Ultra-High Performance Concrete in Various Curing Conditions”, Materials, vol. 8, núm. 8, pp. 5537–5553, ago. 2015, doi: 10.3390/ma8085261.
dc.relation.referencesJ. Abellán-García, A. Núñez-López, N. Torres-Castellanos, y J. Fernández-Gómez, “Effect of FC3R on the properties of ultra-high-performance concrete with recycled glass”, Dyna, vol. 86, núm. 211, pp. 84–92, 2019, doi: 10.15446/dyna. v86n211.79596.
dc.relation.referencesZ. Li y P. R. Rangaraju, “Development of UHPC Using Ternary Blends of Ultra- Fine Class F Fly Ash , Meta-kaolin and Portland Cement”, en First International Interactive Symposium on UHPC, 2016, núm. September, pp. 1–12. doi: 10.21838/ uhpc.2016.64.
dc.relation.referencesJ. Abellán García, A. M. Núñez López, N. Torres Castellanos, y J. A. Fernández Gómez, “Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder”, DYNA, vol. 87, núm. 213, pp. 42–51, abr. 2020, doi: 10.15446/dyna.v87n213.82655
dc.relation.referencesJ. Abellán, J. Fernández, N. Torres, y A. Núñez, “Statistical Optimization of ultra high-performance glass concrete”, ACI Mater J., vol. 117, núm. 1, pp. 243–254, 2020, doi: 10.14359/51720292
dc.relation.referencesR. Yu, P. Spiesz, y H. J. H. Brouwers, “Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses”, Cem. Concr. Compos., vol. 55, pp. 383–394, 2015, doi: 10.1016/j. cemconcomp.2014.09.024.
dc.relation.referencesS. Ahmad, I. Hakeem, y M. Maslehuddin, “Development of UHPC Mixtures Utilizing Natural and Industrial Waste Materials as Partial Replacements of Silica Fume and Sand”, Eur. J. Environ. Civ. Eng., vol. 2014, núm. 9, pp. 1106–1126, 2014, doi: 10.1155/2014/713531
dc.relation.referencesN. A. Soliman y A. Tagnit-Hamou, “‘Using glass sand as an alternative for quartz sand in UHPC’”, Constr. Build. Mater., vol. 145, pp. 243–252, 2017, doi: 10.1016/j. conbuildmat.2017.03.187.
dc.relation.referencesM. A. Sanjuán Barbudo y Servando. Chinchón Yepes, “Introducción a la fabricación y normalización del cemento Portland”. Universidad d’Alacant, 2004.
dc.relation.referencesN. Betancur-Granados, “Alternative Production Processes of Calcium Silicate Phases of Portland Cement: A Review”, Civ. Eng. Res. J., vol. 5, núm. 3, jun. 2018, doi: 10.19080/CERJ.2018.05.555665.
dc.relation.references“Artificial Neural Network Model for Strength Prediction of Ultra-High-Performance Concrete”, ACI Mater. J., vol. 118, núm. 4, jul. 2021, doi: 10.14359/51732710.
dc.relation.referencesE. Camacho Torregrosa, “Dosage optimization and bolted connections for UHPFRC ties”. Universidad Politécnica de Valencia, 2013.
dc.relation.referencesE. Camacho, J. Á. López, y P. Serna, “Definition of three levels of performance for UHPFRC-VHPFRC with available materials, in Proceedings of Hipermat 2012”, en 3rd International Symposium on UHPC and Nanotechnology for Construction Materials, Kassel Uni., M. Schmidt, E. Fehling, C. Glotzbach, S. Fröhlich, y S. Piotrowski, Eds. Kassel, Germany, 2012, pp. 249–256
dc.relation.referencesE. Ghafari, H. Costa, y E. Júlio, “Statistical mixture design approach for eco- efficient UHPC”, Cem. Concr. Compos., vol. 55, núm. September, pp. 17–25, 2015, doi: 10.1016/j.cemconcomp.2014.07.016.
dc.relation.referencesE. Ghafari, M. Bandarabadi, H. Costa, y E. Júlio, “Prediction of Fresh and Hardened State Properties of UHPC: Comparative Study of Statistical Mixture Design and an Artificial Neural Network Model”, J. Mater. Civ. Eng., vol. 27, núm. 11, p. 04015017, 2015, doi: 10.1061/(ASCE)MT.1943-5533.0001270.
dc.relation.referencesL. Nilsson, “Development of UHPC concrete using mostly locally available raw materials”. Luleå University of Technology, 2018.
dc.relation.referencesF. Zunino y K. Scrivener, “The influence of the filler effect on the sulfate requirement of blended cements”, Cem. Concr. Res., vol. 126, p. 105918, dic. 2019, doi: 10.1016/j. cemconres.2019.105918
dc.relation.references“H. de Sílice, ‘Ficha técnica clave: 2.4 Mes: Diciembre Año: 2007’.”
dc.relation.referencesN. A. Soliman y A. Tagnit-Hamou, “Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap”, Constr. Build. Mater., vol. 139, pp. 374–383, may 2017, doi: 10.1016/j.conbuildmat.2017.02.084.
dc.relation.referencesJ. Abellan-Garcia, M. A. Santofimo-Vargas, y N. Torres-Castellanos, “Analysis of metakaolin as partial substitution of ordinary Portland cement in Reactive Powder Concrete”, Adv. Civ. Eng. Mater., vol. 9, núm. 1, pp. 368–386, 2020, doi: 10.1520/ ACEM20190224
dc.relation.referencesH. Madani, A. Bagheri, y P. Tayebe, “A comparison between the pozzolanic reactivity of nanosilica sols and pyrogenic nanosilicas, in Proceedings of Hipermat 2012”,
dc.relation.referencesen 3rd International Symposium on UHPC and Nanotechnology for Construction Materials., Kassel Uni., Kassel, Germany, 2012.
dc.relation.referencesP. Guo, Y. Bao, y W. Meng, “Review of using glass in high-performance fiber reinforced cementitious composites”, Cem. Concr. Compos., vol. 120, p. 104032, jul. 2021, doi: 10.1016/j.cemconcomp.2021.104032.
dc.relation.referencesNational Cancer Institute, “Crystalline Silica”, Cancer Causes and Prevention. p. 2019. [En línea]. Disponible en: https://www.cancer.gov/about-cancer/causes prevention/risk/substances/crystalline-silica
dc.relation.referencesM. Ali, M. S. Abdullah, y S. A. Saad, “Effect of Calcium Carbonate Replacement on Workability and Mechanical Strength of Portland Cement Concrete”, Adv. Mater. Res., vol. 1115, pp. 137–141, jul. 2015, doi: 10.4028/www.scientific.net/ AMR.1115.137.
dc.relation.references“FT-CARBONATO-DE-CALCIO-USP-10092”. [En línea]. Disponible en: https://www. protokimica.com/
dc.relation.referencesJ. Péra, S. Husson, y B. Guilhot, “Influence of finely ground limestone on cement hydration”, Cem. Concr. Compos., vol. 21, núm. 2, pp. 99–105, abr. 1999, doi: 10.1016/S0958-9465(98)00020-1
dc.relation.referencesJ. Abellán-García, “K -fold Validation Neural Network Approach for Predicting the One-Day Compressive Strength of UHPC”, Adv. Civ. Eng. Mater. Doi101520ACEM20200055, vol. 10, núm. 1, pp. 223–243, 2021, doi: 10.1520/ ACEM20200055.
dc.relation.referencesD. C. Jaramillo-Murcia, J. Abellán-Garcia, N. Torres-Castellanos, y E. García Castaño, “Properties analysis of UHPC with recycled glass and limestone powders”, ACI Mater. J., doi: 10.14359/51736006.
dc.relation.referencesP. P. Li, H. J. H. Brouwers, W. Chen, y Q. Yu, “Optimization and characterization of high-volume limestone powder in sustainable ultra-high performance concrete”, Constr. Build. Mater., vol. 242, p. 118112, may 2020, doi: 10.1016/j. conbuildmat.2020.118112
dc.relation.referencesY. Shao, T. Lefort, S. Moras, y D. Rodriguez, “Studies on concrete containing ground waste glass”, Cem. Concr. Res., vol. 30, núm. 1, pp. 91–100, ene. 2000, doi: 10.1016/S0008-8846(99)00213-6.
dc.relation.referencesR. Madandoust y R. Ghavidel, “Mechanical properties of concrete containing waste glass powder and rice husk ash”, Biosyst. Eng., vol. 116, núm. 2, pp. 113 119, oct. 2013, doi: 10.1016/j.biosystemseng.2013.07.006.
dc.relation.referencesV. Vaitkevicius, E. Šerelis, y H. Hilbig, “The effect of glass powder on the microstructure of ultra high performance concrete”, Constr. Build. Mater., vol. 68, pp. 102–109, 2014, doi: 10.1016/j.conbuildmat.2014.05.101.
dc.relation.referencesM. Mirzahosseini y K. A. Riding, “Effect of curing temperature and glass type on the pozzolanic reactivity of glass powder”, Cem. Concr. Res., vol. 58, pp. 103–111, abr. 2014, doi: 10.1016/j.cemconres.2014.01.015.
dc.relation.referencesJ. Abellán-García, “Study of nonlinear relationships between dosage mixture design and the compressive strength of UHPC”, Case Stud. Constr. Mater., vol. 17, núm. May, 2022, doi: 10.1016/j.cscm.2022.e01228.
dc.relation.referencesJ. Abellán-García y J. S. Guzmán-Guzmán, “Random forest-based optimization of UHPFRC under ductility requirements for seismic retrofitting applications”, Constr. Build. Mater., vol. 285, 2021, doi: 10.1016/j.conbuildmat.2021.122869.
dc.relation.referencesJ. Abellán-García, J. J. Ortega-Guzmán, D. A. Chaparro-Ruiz, y E. García-Castaño, “A Comparative Study of LASSO and ANN Regressions for the Prediction of the Direct Tensile Behavior of UHPFRC”, Adv. Civ. Eng. Mater., vol. 11, núm. 1, pp. 235 262, 2022, doi: 10.1520/acem20210101.
dc.relation.referencesJ. Abellán-Garcia, J. Sánchez-Díaz, y V. Ospina-Becerra, “Neural network-based optimization of fibers for seismic retrofitting applications of UHPFRC”, Eur. J. Environ. Civ. Eng., vol. June, 2021, doi: 10.1080/19648189.2021.1938687.
dc.relation.referencesP. Guo, W. Meng, H. Nassif, H. Gou, y Y. Bao, “New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure”, Constr. Build. Mater., vol. 257, p. 119579, oct. 2020, doi: 10.1016/j.conbuildmat.2020.119579.
dc.relation.referencesF. Puertas, H. Santos, M. Palacios, y S. Martínez-Ramírez, “Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes”, Adv. Cem. Res., vol. 17, núm. 2, pp. 77–89, 2005, doi: 10.1680/adcr.17.2.77.65044.
dc.relation.referencesJ. Arend, A. Wetzel, y B. Middendorf, “Investigation of Superplasticiser-Particle Interacton via Fluorescence Microscopy”, en Proceedings of the International Symposium on Ultra High Performance Concrete2, 2016, pp. 34–35.
dc.relation.referencesJ. Abellán, N. Torres, A. Nuñez, y J. Fernández, “INFLUENCIA DEL EXPONENTE DE FULLER, LA RELACION AGUA CONGLOMERANTE Y EL CONTENIDO EN POLICARBOXILATO EN LAS PROPIEDADES DE CONCRETOS DE MUY ALTAS PRESTACIONES.”, p. 17
dc.relation.referencesM. Anwar, H. Soghair, y M. Ahmed, “New Aspects Affecting the Mutual Relation between Strength and Permeability of Concrete”, Japan Concrete Institute, vol. 15, núm. 1, 1993.
dc.relation.referencesFicha Técnica del producto”. [En línea]. Disponible en: https://col.sika.com/es/ construccion/concreto/produccion-de-concreto-mortero-y-cemento/concreto premezclado/sika-viscocrete-2020co.html
dc.relation.referencesK. Wille, S. El-Tawil, y A. E. Naaman, “Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensil
dc.relation.referencesJ. Abellán-García, J. Fernández-Gómez, N. Torres-Castellanos, y A. Núñez-López, “Tensile behavior of normal strength steel fiber green UHPFRC”, ACI Mater. J., vol. 118, núm. 1, pp. 127–138, 2021, doi: 10.14359/51725992.
dc.relation.referencesS. H. Park, D. J. Kim, G. S. Ryu, y K. T. Koh, “Tensile behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete”, Cem. Concr. Compos., vol. 34, núm. 2, pp. 172–184, feb. 2012, doi: 10.1016/j.cemconcomp.2011.09.009.
dc.relation.referencesP. K. Mehta y J. M. Monteiro, CONCRETE: Microstructure, Properties and Materials. 2001.
dc.relation.referencesD. joo Kim, A. E. Naaman, y S. El-Tawil, “Comparative flexural behavior of four fiber reinforced cementitious composites”, Cem. Concr. Compos., vol. 30, núm. 10, pp. 917–928, nov. 2008, doi: 10.1016/j.cemconcomp.2008.08.002.
dc.relation.referencesJ. Abellán-García, “Comparison of artificial intelligence and multivariate regression in modeling the flexural behavior of UHPFRC”, Dyna, vol. 87, núm. 214, pp. 239 248, 2020, doi: http://doi.org/10.15446/dyna.v87n214.86172.
dc.relation.referencesA. Neira-Medina, J. Abellan-Garcia, y N. Torres-Castellanos, “Flexural behavior of environmentally friendly ultra-high-performance concrete with locally available low-cost synthetic fibers”, Eur. J. Environ. Civ. Eng., vol. June, pp. 1–20, 2021, doi: 10.1080/19648189.2021.1938686
dc.relation.referencesD. Y. Yoo y M. J. Kim, “High energy absorbent ultra-high-performance concrete with hybrid steel and polyethylene fibers”, Constr. Build. Mater., vol. 209, pp. 354 363, 2019, doi: https://doi.org/10.1016/j.conbuildmat.2019.03.096.
dc.relation.references“J. F. Trottier and M. Mahoney, ‘Innovative synthetic fibers. Concrete International,’ Concrete International, vol. 23, no. 6, pp. 23–28, 2001.”
dc.relation.referencesJ. M. Deitzel, P. McDaniel, y J. W. Gillespie, “High performance polyethylene fibers”, en Structure and Properties of High-Performance Fibers, Elsevier, 2017, pp. 167–185. doi: 10.1016/B978-0-08-100550-7.00007-3.
dc.relation.referencesJ.-I. Choi, B. Y. Lee, R. Ranade, V. C. Li, y Y. Lee, “Ultra-high-ductile behavior of a polyethylene fiber-reinforced alkali-activated slag-based composite”, Cem. Concr. Compos., vol. 70, pp. 153–158, jul. 2016, doi: 10.1016/j.cemconcomp.2016.04.002.
dc.relation.referencesM. N. Isa, K. Pilakoutas, M. Guadagnini, y H. Angelakopoulos, “Mechanical performance of affordable and eco-efficient ultra-high performance concrete (UHPC) containing recycled tyre steel fibres”, Constr. Build. Mater., vol. 255, p. 119272, sep. 2020, doi: 10.1016/j.conbuildmat.2020.119272.
dc.relation.referencesF. Tahir, S. Sbahieh, y S. G. Al-Ghamdi, “Environmental impacts of using recycled plastics in concrete”, Mater. Today Proc., vol. 62, pp. 4013–4017, 2022, doi: 10.1016/j.matpr.2022.04.593
dc.relation.referencesY. Zhang y L. Gao, “Influence of Tire-Recycled Steel Fibers on Strength and Flexural Behavior of Reinforced Concrete”, Adv. Mater. Sci. Eng., vol. 2020, pp. 1–7, abr. 2020, doi: 10.1155/2020/6363105
dc.relation.referencesH. U. Ahmed, R. H. Faraj, N. Hilal, A. A. Mohammed, y A. F. H. Sherwani, “Use of recycled fibers in concrete composites: A systematic comprehensive review”, Compos. Part B Eng., vol. 215, p. 108769, jun. 2021, doi: 10.1016/j. compositesb.2021.108769
dc.relation.referencesF. Fraternali, V. Ciancia, R. Chechile, G. Rizzano, L. Feo, y L. Incarnato, “Experimental study of the thermo-mechanical properties of recycled PET fiber reinforced concrete”, Compos. Struct., vol. 93, núm. 9, pp. 2368–2374, ago. 2011, doi: 10.1016/j.compstruct.2011.03.025.
dc.relation.referencesJ. P. Moehle, Seismic design of reinforced concrete buildings. Place of publication not identified: McGraw Hill Education, 2015
dc.relation.referencesMACGREGOR, James Grierson, et al. Reinforced concrete: Mechanics and design. New Jersey: Prentice Hall, 1997.
dc.relation.referencesMehran University of Engineering and Technology, Shaheed Zulfiqar Ali Bhutto Campus, Khairpur Mir’s, Sindh, Pakistan et al., “Effect of steel fibres on the compressive and flexural strength of concrete”, Int. J. Adv. Appl. Sci., vol. 5, núm. 10, pp. 16–21, oct. 2018, doi: 10.21833/ijaas.2018.10.003.
dc.relation.referencesL. Rivera y A. Gerardo, “Concreto simple: Resistencia del concreto”. Universidad del Cauca, 2006
dc.relation.referencesJ. Abellán-García, “Four-layer perceptron approach for strength prediction of UHPC”, Constr. Build. Mater., vol. 256, p. 119465, sep. 2020, doi: 10.1016/j. conbuildmat.2020.119465.
dc.relation.referencesH. Du y K. H. Tan, “Waste Glass Powder as Cement Replacement in Concrete”, J. Adv. Concr. Technol., vol. 12, núm. 11, pp. 468–477, nov. 2014, doi: 10.3151/ jact.12.468.
dc.relation.referencesY. Niibori, M. Kunita, O. Tochiyama, y T. Chida, “Dissolution Rates of Amorphous Silica in Highly Alkaline Solution”, J. Nucl. Sci. Technol., vol. 37, núm. 4, pp. 349 357, abr. 2000, doi: 10.1080/18811248.2000.9714905.
dc.relation.referencesJ. Esmaeili y A. O. AL-Mwanes, “Performance Evaluation of Eco-Friendly Ultra High-Performance Concrete Incorporated with Waste Glass-A Review”, IOP Conf. Ser. Mater. Sci. Eng., vol. 1094, núm. 1, p. 012030, feb. 2021, doi: 10.1088/1757 899X/1094/1/012030.
dc.relation.referencesS. C. Kou y F. Xing, “The Effect of Recycled Glass Powder and Reject Fly Ash on the Mechanical Properties of Fibre-Reinforced Ultrahigh Performance Concrete”, Hindawi Publ. Corp. Adv. Mater. Sci. Eng., núm. May, 2012, doi: 10.1155/2012/263243.
dc.relation.referencesM H Rahman, A A Shames, y G M Sadiqul Islam, “Potential of recycled glass as cementitious material in concrete”, 2014, doi: 10.13140/RG.2.1.1777.1121
dc.relation.referencesG. M. S. Islam, M. H. Rahman, y N. Kazi, “Waste glass powder as partial replacement of cement for sustainable concrete practice”, Int. J. Sustain. Built Environ., vol. 6, núm. 1, pp. 37–44, jun. 2017, doi: 10.1016/j.ijsbe.2016.10.005.
dc.relation.referencesA. Kaminsky, M. Krstic, P. Rangaraju, A. Tagnit-Hamou, y M. D. A. Thomas, “Ground Glass Pozzolan for Use in Concrete”, Concr. Int, vol. 42, núm. 11, pp. 24–32, 2020.
dc.relation.referencesF. Pacheco-Torgal, “Handbook of Alkali-activated Cements, Mortars and Concretes”, en Handbook of Alkali-Activated Cements, Mortars and Concretes, Elsevier, 2015, pp. 1–16. doi: 10.1533/9781782422884.1.
dc.relation.referencesK. Kupwade-Patil y E. Allouche, “Effect of Alkali Silica Reaction (ASR) in Geopolymer Concrete”, p. 12.
dc.relation.referencesS. Urhan, “Alkali silica and pozzolanic reactions in concrete. Part 1: Observations on expanded perlite aggregate concretes Interpretation of published results and an hypothesis concerning the mechanism”, Cem. Concr. Res., vol. 17, núm. 1, pp. 141–152, 1987, doi: https://doi.org/10.1016/0008-8846(87)90068-8.
dc.relation.referencesA. Kunhi Mohamed et al., “The Atomic-Level Structure of Cementitious Calcium Aluminate Silicate Hydrate”, J. Am. Chem. Soc., vol. 142, núm. 25, pp. 11060–11071, jun. 2020, doi: 10.1021/jacs.0c02988
dc.relation.referencesKunal, R. Siddique, A. Rajor, y M. Singh, “Influence of Bacterial-Treated Cement Kiln Dust on Strength and Permeability of Concrete”, J. Mater. Civ. Eng., vol. 28, núm. 10, p. 04016088, oct. 2016, doi: 10.1061/(ASCE)MT.1943-5533.0001593
dc.relation.referencesF. Puertas, M. Palacios, H. Manzano, J. S. Dolado, A. Rico, y J. Rodríguez, “A model for the C-A-S-H gel formed in alkali-activated slag cements”, J. Eur. Ceram. Soc., vol. 31, núm. 12, pp. 2043–2056, oct. 2011, doi: 10.1016/j. jeurceramsoc.2011.04.036.
dc.relation.referencesH. Siad, M. Lachemi, M. Sahmaran, H. A. Mesbah, y K. M. A. Hossain, “Use of recycled glass powder to improve the performance properties of high volume fly ash-engineered cementitious composites”, Constr. Build. Mater., vol. 163, pp. 53–62, feb. 2018, doi: 10.1016/j.conbuildmat.2017.12.067
dc.relation.referencesN. M. Azmee y N. Shafiq, “Ultra-high performance concrete: From fundamental to applications”, Case Stud. Constr. Mater., vol. 9, 2018, doi: 10.1016/j.cscm.2018. e00197.
dc.relation.referencesH. Martin-Sanz, E. Chatzi, y E. Brühwiler, “The use of Ultra High Performance Fibre Reinforced cement-based Composites in rehabilitation projects: a review”, en 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures, 2016. doi: 10.21012/fc9.219
dc.relation.references[133] [134] [135] [136] [137] [138] [139] [140] [141] R. Suter y Al., “Using UHPFRC for Complex Facade Elements”, en Designing and building with UHPFRC - State of the Art and Development, F. Toutlem., London, 2011, pp. 405–419.
dc.relation.referencesJ. Abellán-García, J. A. Fernández-Gómez, N. Torres-Castellanos, y A. M. Núñez López, “Machine Learning Prediction of Flexural Behavior of UHPFRC”, en Fibre Reinforced Concrete: Improvements and Innovations. BEFIB 2020., vol. 4, P. Serna, A. Llano-Torre, J. R. Martí-Vargas, y J. Navarro-Gregori, Eds. Valencia, Spain: RILEM Bookseries, 2020, pp. 570–583. doi: 10.1007/978-3-030-58482-5_52.
dc.relation.referencesY. Tanaka, H. Musha, S. Tanaka, y M. Ishida, “Durability performance of UFC sakata-mira footbridge under sea environment”, en Fracture Mechanics of Concrete and Concrete Structures - High Performance, Fiber Reinforced Concrete, Special Loadings and Structural Applications, 2010, pp. 1648–1654.
dc.relation.referencesH. Russel, G y B. a. Graybeal, “Ultra-High Performance Concrete : A State-of-the Art Report for the Bridge Community”, núm. June, p. 171, 2013.
dc.relation.referencesD. de Matteis, P. Marchand, A. Petel, M. Novarin, N. Fabry, y S. Chanut, “A fifth French bridge including UHPFRC components, the widening of the Pinel bridge, in Rouen (France)”, en Proceedings of the International Symposium on Ultra High Performance Concrete of the Second International Symposium on Ultra High Performance Concrete, 2008, pp. 795–802
dc.relation.referencesJ. Abellán-García, A. Nuñez-Lopez, y S. Arango-Campo, “Pedestrian Bridge over Las Vegas Avenue in Medellín. First Latin American Infrastructure in UHPFRC”, en BEFIB 2020, P. Serna, A. Llano-Torre, J. R. Martí-Vargas, y J. Navarro-Gregori, Eds. Valencia (Spain): RILEM Bookseries, 2020, pp. 864–872. doi: https://doi. org/10.1007/978-3-030-58482-5_76
dc.relation.referencesJ. Abellán, A. Núñez, y S. Arango, “Pedestrian bridge of UNAL in Manizales : A new UPHFRC application in the Colombian building market”, en Proceedings of Hipermat 2020 - 5th International Symposium on UHPC and Nanotechnology for Construction Materials, Kassel, Germany, 2020, núm. July, pp. 43–44.
dc.relation.referencesB. Massicotte, M.-A. Dagenais, y F. Lagier, “Performance of UHPFRC jackets for the seismic strengthening of bridge piers”, RILEM-Fib-AFGC Int. Symp. Ultra-High Perform. Fibre-Reinf., núm. 1, pp. 89–98, 2013.
dc.relation.referencesJ. Abellán, J. Fernández, N. Torres, y A. Núñez, “Development of cost-efficient UHPC with local materials in Colombia”, en Proceedings of Hipermat 2020 - 5th International Symposium on UHPC and Nanotechnology for Construction Materials, Kassel, Germany, 2020, pp. 97–98
dc.relation.referencesF. Toutlemonde y J. Resplendino, Designing and Building with UHPFRC. 2013. doi: 10.1002/9781118557839.
dc.relation.referencesMaet, “7 Años de maet 2013-2019”. Magacin de arquitectura de la ecuela de Toledo, 2020.
dc.relation.referencesC. A. SA, “Cemtos Argos SA”. 2021. [En línea]. Disponible en: https://argos.co/ C. D. Reyes-García y L. M. Zapata-Sella, “Iniciativas para la recuperación de envases de vidrio generados por la industria de los licores: revisión de literatura”, PhD Thesis, Universidad Agustiniana, Bogotá, Colombia, 2018. [En línea]. Disponible en: https://repositorio.uniagustiniana.edu.co/bitstream/handle/123456789/687/ ZapataSella-LauraMarcela-2018.pdf?sequence=1&isAllowed=y
dc.relation.referencesB. A. Tayeh, B. H. Abu Bakar, M. A. Megat Johari, y Y. L. Voo, “Utilization of ultra-high performance fibre concrete (UHPFC) for rehabilitation - A review”, Procedia Eng., vol. 54, núm. December 2013, pp. 525–538, 2013, doi: 10.1016/j. proeng.2013.03.048. M. A. Trezza y V. F. Rahhal, “Comportamiento del residuo de vidrio molido en cementos mezcla : Estudio comparativo con microsilice Behavior of the ground glass waste in blending cements : Comparative study with microsilice .”, Rev. Mater., vol. 23, núm. 1, 2018.
dc.relation.referencesR. Hemmings, “Process for Converting Waste Glass Fiber”, Albacem LLC, Peoria, IL, 2005. doi: DE-FG36-03GO13015. R. Idir, M. Cyr, y A. Tagnit-Hamou, “Use of fine glass as ASR inhibitor in glass aggregate mortars”, Constr. Build. Mater., vol. 24, núm. 7, pp. 1309–1312, 2010, doi: 10.1016/j.conbuildmat.2009.12.030
dc.relation.referencesA. Shayan y A. Xu, “Performance of glass powder as a pozzolanic material in concrete: A field trial on concrete slabs”, Cem. Concr. Res., vol. 36, núm. 3, pp. 457–468, 2006, doi: 10.1016/j.cemconres.2005.12.012. A. Shayan y A. Xu, “Value-added utilisation of waste glass in concrete”, Cem. Concr. Res., vol. 34, núm. 1, pp. 81–89, 2004, doi: 10.1016/S0008-8846(03)00251-5
dc.relation.referencesJ. Abellan-Garcia, “Tensile behavior of recycled-glass-UHPC under direct tensile loading”, Case Stud. Constr. Mater., vol. 17, núm. May, pp. 1–16, 2022, doi: 10.1016/j. cscm.2022.e01308. J. Abellán García, N. Torres Castellanos, J. A. Fernandez Gomez, y A. M. Nuñez Lopez, “Ultra-high-performance concrete with local high unburned carbon fly ash”, DYNA, vol. 88, núm. 216, pp. 38–47, feb. 2021, doi: 10.15446/dyna. v88n216.89234.
dc.relation.referencesM. Mousa, E. Cuenca, L. Ferrara, N. Roy, y A. Tagnit-Hamou, “Tensile Characterization of an ‘Eco-Friendly’ UHPFRC with Waste Glass Powder and Glass Sand”, en Strain Hardening Cement-Based Composites. SHCC 2017., 2017, pp. 238–248. doi: https:// doi.org/10.1007/978-94-024-1194-2_28.
dc.relation.referencesE. Šerelis, V. Vaitkevičius, y V. Kerševičius, “Mechanical Properties and Microstructural Investigation of Ultra-High Performance Glass Powder Concrete”, J. Sustain. Archit. Civ. Eng., vol. 1, núm. 14, pp. 5–11, 2016, doi: 10.5755/j01.sace.14.1.14478. J. Abellán-García, A. Núñez-López, N. Torres-Castellanos, y J. Fernández-Gómez, “Factorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder”, Dyna, vol. 87, núm. 213, pp. 42–51, 2020, doi: http:// doi.org/10.15446/dyna.v87n213.82655.
dc.relation.referencesM. Mousa, E. Cuenca, L. Ferrara, N. Roy, y A. Tagnit-Hamou, “Tensile Characterization of an ‘Eco-Friendly’ UHPFRC with Waste Glass Powder and Glass Sand”, en Strain Hardening Cement-Based Composites. SHCC 2017., 2017, pp. 238–248. doi: https:// doi.org/10.1007/978-94-024-1194-2_28. N. A. Soliman y A. Tagnit-Hamou, “Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap”, Constr. Build. Mater., vol. 139, pp. 374–383, 2017, doi: 10.1016/j.conbuildmat.2017.02.084.
dc.relation.referencesN. A. Soliman, A. F. Omran, y A. Tagnit-Hamou, “Laboratory Characterization and Field Application of Novel Ultra-High-Performance Glass Concrete”, ACI Mater. J., vol. 113, núm. 3, jun. 2016, doi: 10.14359/51688827. N. A. Soliman y A. Tagnit-Hamou, “Development of ultra-high-performance concrete using glass powder – Towards ecofriendly concrete”, Constr. Build. Mater., vol. 125, pp. 600–612, oct. 2016, doi: 10.1016/j.conbuildmat.2016.08.073.
dc.relation.referencesK. L. Jain, G. Sancheti, y L. K. Gupta, “Durability performance of waste granite and glass powder added concrete”, Constr. Build. Mater., vol. 252, p. 119075, ago. 2020, doi: 10.1016/j.conbuildmat.2020.119075. B. Taha y G. Nounu, “Utilizing Waste Recycled Glass as Sand/Cement Replacement in Concrete”, J. Mater. Civ. Eng., vol. 21, núm. 12, pp. 709–721, dic. 2009, doi: 10.1061/(ASCE)0899-1561(2009)21:12(709).
dc.relation.referencesSiad, Hocine & Lachemi, Mohamed & Sahmaran, Mustafa & Hossain, K.. (2017). Mechanical, Physical, and Self-Healing Behaviors of Engineered Cementitious Composites with Glass Powder. Journal of Materials in Civil Engineering. 29. 04017016. 10.1061/(ASCE)MT.1943-5533.0001864.”. C. Shi, Y. Wu, C. Riefler, y H. Wang, “Characteristics and pozzolanic reactivity of glass powders”, Cem. Concr. Res., vol. 35, núm. 5, pp. 987–993, 2005, doi: 10.1016/j. cemconres.2004.05.015.
dc.relation.referencesR. Idir, M. Cyr, y A. Tagnit-Hamou, “Use of waste glass in cement-based materials”, en SBEIDCO – 1st International Conference on Sustainable Built Environement Infrastructures in Developing Countries, Orán (Algeria), 2009, vol. N°57-Jan, núm. March, pp. 109 116. doi: 10.4267/dechets-sciences-techniques.3132
dc.relation.referencesH. Ye y A. Radlińska, “Effect of alkalis on cementitious materials: Understanding the relationship between composition, structure, and volume change mechanism”, J. Adv. Concr. Technol., vol. 15, núm. 4, pp. 165–177, 2017, doi: 10.3151/jact.15.165. J. Abellán-García, “Artificial Neural Network-Based Methodology for Optimization of Low-Cost Green UHPFRC Under Ductility Requirements”, en Numerical Modeling Strategies for Sustainable Concrete Structures, RILEM Book., P. Rossi y J.-L. Tailhan, Eds. Marseille, France: Springer Nature Switzerland, 2023, pp. 1–11. doi: 10.1007/978 3-031-07746-3_1.
dc.relation.referencesK. Wille, D. J. D. Kim, y A. E. Naaman, “Strain-hardening UHP-FRC with low fiber contents”, Mater. Struct., vol. 44, núm. 3, pp. 583–598, 2011, doi: 10.1617/s11527 010-9650-4. H. K. S. Eldin, H. A. Mohamed, M. Khater, y S. Ahmed, “Mechanical Properties of Ultra-High Performance Fiber Reinforced Concrete”, vol. 4, núm. 4, p. 8, 2014. D.-Y. Yoo, S.-T. Kang, y Y.-S. Yoon, “Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC”, Constr. Build. M
dc.relation.referencesH. Othman y H. Marzouk, “Impact Response of Ultra-High-Performance Reinforced Concrete Plates”, ACI Struct. J., vol. 113, núm. 6, nov. 2016, doi: 10.14359/51689157. Y. Li, E.-H. Yang, y K. H. Tan, “Flexural behavior of ultra-high performance hybrid fiber reinforced concrete at the ambient and elevated temperature”, Constr. Build. Mater., vol. 250, p. 118487, jul. 2020, doi: 10.1016/j.conbuildmat.2020.118487.
dc.relation.references“Abellán-García, J. Base de datos ensayos UHPFRC, 2019.” S. L. Yang, “Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC)”, Constr. Build. Mater., pp. 2291–2298, 2009.
dc.relation.referencesH. Siad, M. Lachemi, M. Sahmaran, H. A. Mesbah, K. M. Anwar Hossain, y A. Ozsunar, “Potential for using recycled glass sand in engineered cementitious composites”, Mag. Concr. Res., vol. 69, núm. 17, pp. 905–918, sep. 2017, doi: 10.1680/jmacr.16.00447. Z. Wu, C. Shi, W. He, y L. Wu, “Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete”, Constr. Build. Mater., vol. 103, pp. 8–14, 2016, doi: 10.1016/j.conbuildmat.2015.11.028.
dc.relation.referencesS. Pyo y H. K. Kim, “Fresh and hardened properties of ultra-high performance concrete incorporating coal bottom ash and slag powder”, Constr. Build. Mater., vol. 131, pp. 459–466, 2017, doi: 10.1016/j.conbuildmat.2016.10.109
dc.relation.referencesR Core Team, R: A Language and Environment for Statistical Computing. Vienna, Austria, 2018. [En línea]. Disponible en: https://www.r-project.org/ T. Roth, “Working with the qualityTools package”. p. 35, 2016. [En línea]. Disponible en: http://www.r-qualitytools.org. R. V. Lenth, “Response-surface methods in R, using rsm”, J. Stat. Softw., vol. 32, núm. 7, pp. 1–17, 2012, doi: http://dx.doi.org/10.18637/jss.v032.i07.
dc.relation.referencesE. Ghafari, H. Costa, E. Nuno, y B. Santos, “RSM-based model to predict the performance of self-compacting UHPC reinforced with hybrid steel micro-fibers”, Constr. Build. Mater., vol. 66, núm. September, pp. 375–383, 2014, doi: 10.1016/j. conbuildmat.2014.05.064. E. Ghafari, H. Costa, E. Nuno, B. Santos, H. Costa, y E. Júlio, “Critical review on eco-efficient ultra high performance concrete enhanced with nano- materials”, Constr. Build. Mater. J., vol. 101, núm. December, pp. 201–208, 2015, doi: 10.1016/j. conbuildmat.2015.10.066.
dc.relation.referencesC. Pedrajas, V. Rahhal, y R. Talero, “Determination of characteristic rheological parameters in Portland cement pastes”, Constr. Build. Mater., vol. 51, pp. 484–491, 2014, doi: 10.1016/j.conbuildmat.2013.10.004. G. Derringer y R. Suich, “Simultaneous Optimization of Several Response Variables”, J. Qual. Technol., vol. 21, pp. 214–219, 1980. N.-H. Nguyen, J. Abellán-García, S. Lee, E. Garcia-Castano, y T. P. Vo, “Efficient estimating compressive strength of ultra-high performance concrete using XGBoost model”, J. Build. Eng., vol. 52, núm. March, p. 104302, 2022, doi: 10.1016/j.jobe.2022.104302.
dc.relation.references“Certificación, A. E. D. N. (1996). UNE-EN 196-1: 2016: métodos de ensayo de cementos: parte 1: determinación de resistencias mecánicas, AENOR. ed. Asociación Española de Normalización y Certificación, Madrid.” ASTM C1403-15, “Standard Test Method for Rate of Water Absorption of Masonry Mortars”. C09 Committee, “Test Method for Potential Alkali Reactivity of Aggregates (Mortar Bar Method)”, ASTM International. doi: 10.1520/C1260-21. C01 Committee, “Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete”, ASTM International. doi: 10.1520/C0490_C0490M-17
dc.relation.referencesD18 Committee, “Test Methods for pH of Soils”, ASTM International. doi: 10.1520/ D4972-19
dc.relation.referencesICONTEC, “Norma técnica colombiana NTC 121. Ingeniería civil y arquitectura. Cemento Pórtland. Especificaciones físicas y mecánicas.” 2021.
dc.relation.referencesC09 Committee, “Specification for Silica Fume Used in Cementitious Mixtures”, ASTM International. doi: 10.1520/C1240-20. “Fundación Green Apple”. [En línea]. Disponible en: greenapplecartagena.com
dc.relation.referencesM. A. Moeini, M. Bagheri, A. Joshaghani, A. A. Ramezanianpour, y F. Moodi, “Feasibility of Alkali-Activated Slag Paste as Injection Material for Rehabilitation of Concrete Structures”, J. Mater. Civ. Eng., vol. 30, núm. 10, p. 04018252, oct. 2018, doi: 10.1061/(ASCE)MT.1943-5533.0002400. N. Tamanna y R. Tuladhar, “Sustainable Use of Recycled Glass Powder as Cement Replacement in Concrete”, Open Waste Manag. J., vol. 13, núm. 1, pp. 1–13, mar. 2020, doi: 10.2174/1874347102013010001.
dc.relation.referencesC09 Committee, “Specification for Chemical Admixtures for Concrete”, ASTM International. doi: 10.1520/C0494_C0494M-19E01. Z. Kalakada, J. H. Doh, y G. Zi, “Utilisation of coarse glass powder as pozzolanic cement—A mix design investigation”, Constr. Build. Mater., vol. 240, p. 117916, abr. 2020, doi: 10.1016/j.conbuildmat.2019.117916.
dc.relation.references. Abellán, J. Fernández, N. Torres, y A. Núñez, “Statistical Optimization of ultra high-performance glass concrete”, ACI Mater J., vol. 117, núm. 1, pp. 243–254, 2020, doi: 10.14359/51720292. K. H. Tan y H. Du, “Use of waste glass as sand in mortar: Part I – Fresh, mechanical and durability properties”, Cem. Concr. Compos., vol. 35, núm. 1, pp. 109–117, ene. 2013, doi: 10.1016/j.cemconcomp.2012.08.028.
dc.relation.referencesD. C. Montgomery, Design and analysis of experiments. New Jersey: John Wiley & Sons, Inc, 2005. S. Abbas, M. L. Nehdi, y M. A. Saleem, “Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges”, Int. J. Concr. Struct. Mater., vol. 10, núm. 3, pp. 271–295, 2016, doi: 10.1007/s40069-016-0157-4.
dc.relation.referencesS. Kubens, Interaction of cement and admixtures and its influence on rheological properties, vol. 49. Göttingen,germany, 2010. [En l
dc.relation.references. Abellán García, J. Fernández Gómez, y N. Torres Castellanos, “Properties prediction of environmentally friendly ultra-high-performance concrete using artificial neural networks”, Eur. J. Environ. Civ. Eng., pp. 1–25, may 2020, doi: 10.1080/19648189.2020.1762749.
dc.relation.referencesT. Ahmed, M. Elchalakani, A. Karrech, M. S. Mohamed Ali, y L. Guo, “Development of ECO-UHPC with very-low-C3A cement and ground granulated blast furnace slag”, Constr. Build. Mater., vol. 284, p. 122787, 2021, doi: 10.1016/j. conbuildmat.2021.122787.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.proposalAluminato tricálcicospa
dc.subject.proposalASTM C1856spa
dc.subject.proposalPolipropileno/spa
dc.subject.proposalPolietilenospa
dc.subject.proposalVidrio recicladospa
dc.subject.proposalConcreto de ultra altas prestaciones
dc.titleDesarrollo de un concreto tipo UHPC/UHPFRC con alto volumen de vidrio reciclado y cemento disponible localmentespa
dc.typeLibro
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/book
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
person.identifier.orcid0000-0002-1496-5511
person.identifier.orcid0000-0003-1099-0901
relation.isAuthorOfPublication4d739d1f-8947-48de-970a-891e0193b9a3
relation.isAuthorOfPublication5e350105-eac5-4f3e-9d35-35e58b8f7c62
relation.isAuthorOfPublication.latestForDiscovery4d739d1f-8947-48de-970a-891e0193b9a3

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
28. Desarrollo de un concreto.pdf
Tamaño:
13.41 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones