Publicación:
Introducción al análisis de datos funcionales

dc.contributor.authorMELENDEZ SURMAY, RAFAEL
dc.date.accessioned2024-12-18T20:48:27Z
dc.date.available2024-12-18T20:48:27Z
dc.date.issued2022
dc.descriptionIncluye índice de figurasspa
dc.description.abstractCon este libro se pretende abordar el tratamiento de los procesos estocásticos discretizados y los métodos aplicados para suavizar las curvas con la ayuda del software R para el manejo de datos funcionales. Ramsay et al. (2009) proporcionan una descripción mucho más completa y detallada de las herramientas R y MATLAB utilizadas para el análisis de estos datos. Nuestro objetivo es permitir que el lector realice análisis simples en R y obtenga una comprensión global del ADF. Por lo tanto, para mayor alcance en los siguientes capítulos se presentará con mayor detalle los métodos de inferencia con el enforque de permutación y Bootstrap y métodos basados en la norma ℒ2. Inicialmente se aborda el tema de estimación de las curvas suaves a través de métodos bases de funciones que incluye la más utilizadas que son las polinómicas, b-splines y de Fourier. Continuado con la estimación de parámetros de localización y variabilidad funcional que incluye el boxplot funcional con sus respectivos códigos en R para su aplicación. A su vez se definirá pruebas de hipótesis de una muestra, dos muestras y ANOVA de una vía para datos funcionales bajo el contexto paramétrico y no paramétrico para cuando no se asuma gaussianas y el tamaño de las muestras sea pequeña. Lo anterior exige introducir algunos conceptos como la profundidad (depth) funcional, además de definir métodos multivariados como el de componentes principales CP al caso funcional y el de la expansión de Karhunen-Loève. Finalmente, incluye algunas simulaciones para muestras de objetos funcionales con algunos supuestos para curvas con ruido.spa
dc.description.abstractThis book aims to address the treatment of discretized stochastic processes and the methods applied to smooth the curves with the help of R for handling functional data. Ramsay et al. (2009) provided a much more complete and detailed description of the R and MATLAB tools used for the analysis of these data. Our goal is to allow the reader to perform simple analysis in R and gain a comprehensive understanding of ADF. Therefore, for greater scope in the following chapters, the inference methods with the permutation and Bootstrap approach and methods based on the ℒ2 norm will be finished in greater detail. Initially, the issue of estimation of smooth curves was approached through function basis methods that include the most used, which are polynomials, B-splines and Fourier. Continued with the estimation of functional localization and substitution parameters that includes the functional boxplot with its hallmarks in R for its application. In turn, one-sample, two-sample and one-way ANOVA tests will be defined for functional data under the parametric and non-parametric context for when Gaussians are not assumed and the sample size is small. This requires introducing some concepts such as functional depth, in addition to defining multivariate methods such as the main components CP to the functional case and the Karhunen-Loève expansion. Finally, it includes some simulations for functional object samples with some assumptions for noisy curves.eng
dc.description.editionPrimera edición
dc.description.notesIncluye ilustraciones a color y a blanco y negro; diagramas a blanco y negrospa
dc.description.tableofcontentsDedicatoria Resumen Abstract Introducción Capítulo I Conceptos básicos Rugosidad Capítulo II Funciones Bases Funciones polinómicas Bases de Fourier La base spline Capítulo III Medidas de localización funcional La media funcional La función de covarianza Estimación de la mediana y moda para datos funcionales Bandas de confianza para la media Detección de valores atípicos funcionales Capítulo IV Marco Matemático del ADF Análisis de Componentes Principales Funcionales Capítulo V Prueba de hipótesis para datos funcionales El problema de una muestra El problema de dos muestras ANOVA de una vía Capítulo VI Simulación para muestras de curvas Simulaciones Conclusión Bibliografíaspa
dc.format.extent95 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.isbn978-628-7619-00-5
dc.identifier.urihttps://repositoryinst.uniguajira.edu.co/handle/uniguajira/1451
dc.language.isospa
dc.publisherUniversidad de La Guajira
dc.publisher.placeDistrito Especial, Turístico y Cultural de Riohacha
dc.relation.referencesCuevas, A., Febrero, M. and Fraiman, R. (2006) On the use of the bootstrap for estimating functions with functional data. Computational Statistics and Data Analysis, In press.
dc.relation.referencesCuevas, A., Febrero, M., Fraiman, R., (2004), An ANOVA test for functional data. Computational Statistics and Data Analysis 47, 111–122.
dc.relation.referencesCattell, R. B. (1999). The scree test for the number of factors. Journal of Multivariate Behavioral Research, 1, 245-276.
dc.relation.referencesCox, D.D., Lee, J.S., 2008. Pointwise testing with functional data using the Westfall–Young randomization method. Biometrika 95 (3), 621–634.
dc.relation.referencesCroux, C. & Ruiz-Gazen, A. (2005), `High breakdown estimators for principal components: the projection-pursuit approach revisited', Journal of Multivariate Analysis 95(1), 206-226. http://ideas.repec.org/a/eee/jmvana/v95y2005i1p206-226.html
dc.relation.referencesFebrero, M., Galeano, P. & Gonzalez-Manteiga, W. (2007), A functional analysis of NOx levels: location and scale estimation and outlier detection', Computational Statistics 22(3), 411- 427.http://www.springerlink.com/content/146v81216v078582
dc.relation.referencesFebrero, M., Galeano, P. & Gonzalez-Manteiga, W. (2008), “Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels”, Environmetrics 19(4), 331-341.
dc.relation.referencesFerraty, F. and P. Vieu (2001). The functional nonparametric model and its applications to spectometric data. Computational Statistics 17, 545–564.
dc.relation.referencesFerraty, F. and Vieu, P. (2006) Nonparametric Functional Data Analysis: methods, theory, applications and implementations. Springer-Verlag, London.
dc.relation.referencesFraiman, R. and Muniz, G. (2001) Trimmed means for functional data. Test, 10, 419-440.
dc.relation.referencesGorecki, T., y Smaga,L.,(2015) Comparison of tests for the one-way anova problem for functional data, Comput. Stat. 30 (4), 987–1010.
dc.relation.referencesGorecki, T. y Smaga, L.,(2015), Comparison of tests for the one-way anova problem for functional data, Comput. Stat. 30 (4) 987–1010.
dc.relation.referencesHorváth, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications. Springer.
dc.relation.referencesHyndman, R. J. (1996), `Computing and graphing highest density regions', The American Statistician 50(2), 120-126.http://www.jstor.org/stable/2684423
dc.relation.referencesHyndman, R. J. & Ullah, M. S. (2007), `Robust forecasting of mortality and fertility rates: A functional data approach', Computational Statistics & Data Analysis 51(10), 4942-4956. http://ideas.repec.org/a/eee/csdana/v51y2007i10p4942-4956.html
dc.relation.referencesHyndman, R. J. (1996), `Computing and graphing highest density regions', The American Statistician 50(2), 120-126. http://www.jstor.org/stable/2684423
dc.relation.referencesHyndman, R. J. & Ullah, M. S. (2007), `Robust forecasting of mortality and fertility rates: A functional data approach', Computational Statistics & Data Analysis 51(10), 4942-4956. http://ideas.repec.org/a/eee/csdana/v51y2007i10p4942-956.html
dc.relation.referencesHsing, T. and Eubank, R. (2015). Theoretical foundations of functional data analysis, with an introduction to linear operators, volume 997. John Wiley & Sons.
dc.relation.referencesJones, M. C. & Rice, J. A. (1992), `Displaying the important features of large collections of similar curves', The American Statistician 46(2), 140-145 http://www.jstor.org/stable/2684184
dc.relation.referencesJones, M. C. & Rice, J. A. (1992), `Displaying the important features of large collections of similar curves', The American Statistician 46(2), 140-145.
dc.relation.referencesRamsay, J.O., Heckman, N. & Silverman, B.W. Spline smoothing with modelbased penalties. Behavior Research Methods, Instruments, & Computers 29, 99– 106 (1997). https://doi.org/10.3758/BF03200573
dc.relation.referencesRamsay, J. O. and Silverman, B. W. (2005), Functional Data Analysis. Springer- Verlag, New York.
dc.relation.referencesRamsay, J., Hooker, G., and Graves, S. (2009), Functional Data Analysis with R and MATLABR_. Springer, London.
dc.relation.referencesRamsay, J. O. and B. W. Silverman (2005). Functional Data Analysis, Second Edition. New York: Springer.
dc.relation.referencesRamsay, J., y Silverman, B., (1997), Functional Data Analysis. Springer.
dc.relation.referencesR Core Team, (2016), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.
dc.relation.referencesRice, J. & Silverman, B. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves, Journal of the Royal, Statistical Society. Series B (Methodological), 53, 233-243.
dc.relation.referencesRousseeuw, P., Ruts, I. & Tukey, J. W. (1999), `The bagplot: A bivariate boxplot', The American Statistician 53(4), 382-387.
dc.relation.referencesScott, D. W. (1992), Multivariate density estimation: theory, practice, and visualization, Wiley, New York. http://www.wiley.com/WileyCDA/WileyTitle/productCd- 0471547700.html
dc.relation.referencesSara López-Pintado & Juan Romo (2009) On the Concept of Depth for Functional Data, Journal of the American Statistical Association, 104:486, 718-734,DOI: 10.1198/jasa.2009.0108
dc.relation.referencesShen, Q., Faraway, J., (2004), An F test for linear models with functional responses. Statistica Sinica 14, 1239–1257.
dc.relation.referencesSood, A., James, G. M. & Tellis, G. J. (2009), `Functional regression: a new model for predicting market penetration of new products', Marketing Science 28(1), 36-51. http://mktsci.journal.informs.org/cgi/content/abstract/mksc.1080.0382v1
dc.relation.referencesTukey, J. W. (1975) Mathematics and the picturing of data. Proceedings of the International Congress of Mathematicians (R. D. James, Ed.), Vol. 2, pp. 523- 531, Vancouver, 1975.
dc.relation.referencesVsevolozhskaya, O. A., Greenwood, M. C., Bellante, G. J., Powell, S. L., Lawrence, R. L. and Repasky, K. S. (2013). Combining functions and the closure principle for performing follow-up tests in functional analysis of variance. Comput. Statist. Data Anal. 67 175–184.
dc.relation.referencesVsevolozhskaya, O.A, et al (2013), Combining functions and the closure principle for performing follow-up tests in functional analysis of variance, Computational Statistics & Data Analysis Volume 67, November 2013, Pages 175-184.
dc.relation.referencesWahba, G., (1990), Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia.
dc.relation.referencesZhang, C., Peng, H., and Zhang, J.-T.(2010), Two sample tests for functional data. Communications in Statistics–Theory and Methods, 39(4):559–578.
dc.relation.referencesZhang, J.-T. (2011), Statistical inferences for linear models with functional responses. Statistica Sinica, 21:1431–1451.
dc.relation.referencesZhang, J. T., & Chen, J. (2007). Statistical inferences for functional data. The Annals of Statistics, 35(3), 1052-1079.
dc.relation.referencesZhang, J., (2014), Analysis of Variance for Functional Data, CRC Press.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.proposalDatos funcionalesspa
dc.subject.proposalB splinesspa
dc.subject.proposalBases de Fourierspa
dc.subject.proposalSoftware Rspa
dc.subject.proposalANOVA funcionalspa
dc.subject.proposalFunctional dataeng
dc.subject.proposalB splineseng
dc.subject.proposalFourier Baseseng
dc.subject.proposalSoftware Reng
dc.subject.proposalfunctional ANOVAeng
dc.titleIntroducción al análisis de datos funcionalesspa
dc.typeLibro
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/book
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
person.identifier.orcid0000-0002-6449-0358
relation.isAuthorOfPublication244beb8d-d13e-4bd3-81d5-75453914b351
relation.isAuthorOfPublication.latestForDiscovery244beb8d-d13e-4bd3-81d5-75453914b351

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
93. ANALISIS DATOS FUNCIONALES -FINAL-.pdf
Tamaño:
4.34 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones