Publicación:
Polímeros sostenibles. Una propuesta innovadora para su reciclaje en la agroindustria

dc.contributor.authorFUENTES MOLINA, NATALIA
dc.contributor.authorARROYO DE LA OSSA, MIRYAM YORLENIS
dc.coverage.spatialDepartamento de La Guajira
dc.date.accessioned2025-10-03T22:10:51Z
dc.date.available2025-10-03T22:10:51Z
dc.date.issued2025
dc.descriptionIncluye índice de tablas y figurasspa
dc.description.abstractLa transformación de los residuos poliméricos en productos comercialmente via bles con diversas aplicaciones ingenieriles viene avanzando en forma significati va los últimos años, siendo una alternativa ecológica innovadora que plantea el aprovechamiento de las fibras residuales de la agroindustria, como elemento de refuerzo en las matrices de residuos poliméricos, por su fácil accesibilidad, reno vabilidad, no toxicidad, baja densidad, reducción de costos, biodegradabilidad y propiedades mecánicas satisfactorias, convirtiéndolos en cambios sostenibles. De manera particular, en este libro se analizan aspectos claves de los bio-com puestos emergentes de materiales poliméricos residuales y fibras naturales via bles; exploramos, además, la composición química, así como las propiedades físicas, mecánicas y térmicas de las matrices poliméricos reforzados con las fibras resultantes, para finalmente proponer el reciclaje como una estrategia innovado ra para la valorización de estos residuos en el sector agrícola e industrial. En términos generales, se abordan aspectos técnicos claves para: i. Establecer la composición y características de los residuos poliméricos recuperados que permitan obtener buenas interfases en las matrices; ii. Analizar el efecto que con fieren los refuerzos naturales a las matrices elaboradas, logrando finalmente; iii. Validar los posibles usos en la elaboración de productos agrícolas e industriales. En este libro, se crea un marco para el reciclaje de los polímeros residuales y las fibras naturales en la elaboración de productos con aplicaciones agrícolas e industriales que consideran las posibles formas de poner en funcionamiento la innovación sostenible y la conciencia ambiental, como camino para avanzar en la implementación de acciones con un direccionamiento estratégico, en el que se explican las diferentes metodologías, seguidos por estudios de casos, con los hallazgos, limitaciones y perspectivas futuras, como alternativa económicamente viable y socialmente segura.spa
dc.description.editionPrimera edición
dc.description.tableofcontentsPresentación Introducción Avances de los polímeros residuales reforzados Tendencias del aprovechamiento de los polímeros residuales reforzados Experiencias investigativas de los refuerzos naturales en matrices de residuos poliméricos Desafíos emergentes del reciclaje de los poliméros residuales Generalidades de los poliméros residuales Residuos poliméricos Clasificación de los residuos poliméricos Reciclaje de polímeros residuales Métodos y técnicas de reciclaje de polímeros residuales Reciclaje mecánico Reciclaje químico Reciclaje térmico Análisis de la fibras naturales residuales Fibras naturales alternativas sostenibles Composición química de las fibras naturales Propiedades de las fibras naturales Posibles tratamientos aplicados a las fibras naturales residuales Materiales compuestos propiedades y perspectivas Materiales compuestos Materiales compuestos de polímeros residuales reforzados con fibras naturales y sus propiedades Refuerzos de matrices poliméricas Investigaciones de los refuerzos con hallazgos importantes como alternativa viable y efectiva de reciclaje Investigaciones de matrices poliméricas con fibras sintéticas Investigaciones de matrices poliméricas con fibras naturales Aplicaciones viables del reciclaje de los polímeros residuales reforzados Prototipo de las bandejas para plántulas Prototipo de película de protección de suelos Prototipo de pantallas especiales para cubiertas de invernaderos Prototipo de los contenedores flexibles Prototipo de mangueras flexibles para riego con acoples Prototipo de tuberías flexibles para riego con acoples Prototipo de contenedores de sustancias químicas Prototipo de comederos y bebederos de animales Prototipo de vallas espaciadoras Prototipo de geo-membranas Prototipo de carpa o cobertizo Prototipo de las mantas de protección de frutos Consideraciones finales Referencias bibliográficasspa
dc.format.extent71 Páginas
dc.format.mimetypeapplication/pdf
dc.identifier.isbn978-628-7718-49-4
dc.identifier.urihttps://repositoryinst.uniguajira.edu.co/handle/uniguajira/1668
dc.language.isospa
dc.publisherUniversidad de La Guajira
dc.publisher.placeDistrito Especial, Turístico y Cultural de Riohacha
dc.relation.referencesAaliya, B; Sunooj, K; Lackner; M. (2021). Biopolymer composites: A review. International Journal of Biobased Plastics. 2021, 3, 40-84. https://doi.org/10.1080/24759651.2021.1881 214
dc.relation.referencesAzman, M; Asyraf, M; Khalina, A; Petru, M; Ruzaidi, C; Sapuan, S; Wan Nik, W; Ishak, M; Ilyas, R; Suriani, M. (2021). Natural Fiber Reinforced Composite Material for Product Design: A Short Review. Polímers. 2021, 13 (12), 1917. https://doi.org/10.3390/polym13121917
dc.relation.referencesGanesan, C; Joanna, P. (2018). Fatigue Life and Residual Strength prediction of GFRP Composites: An Experimental and Theoretical approach. Lat. Am. j. solidsstruct. 2018, 15 (7), 72. https://doi.org/10.1590/1679-78255095
dc.relation.referencesRoy, K; Debnath, S; Pongwisuthiruchte, A; Potiyaraj, P. (2021). Recent advances of natural fibers based green rubber composites: Properties, current status, and future perspectives. Appliepoly mer. 2021, 138 (35), 1-17. https://doi.org/10.1002/app.50866
dc.relation.referencesGowda, Y; Sanjay, M; Bhat, P; Madhu, P; Senthamaraikannan; Yogesha, B. (2018). Polymer matrix-natural fiber composites: An overview. Cogent Engineering. 2018, 5 (1) 13. https:// doi.org/10.1080/23311916.2018.1446667
dc.relation.referencesThyavihalli, Y; Rangappa, S; Parameswaranpillai, J; Siengchin, S. (2019). Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Compre hensive Review. Front. Mater. 2019, 6, 226. https://doi.org/10.3389/fmats.2019.00226
dc.relation.referencesTri-Dung, Ngo. (2017). Natural Fibers for Sustainable Bio-Composites. Intechopen: Edmonton, Alberta, Canadá. 2017. http://dx.doi.org/10.5772/intechopen.71012
dc.relation.referencesSonar, T; Patil, S; Deshmukh, V; Acharya, R. (2015). Natural Fiber Reinforced Polymer Composite Material-A Review. Journal of Mechanical and Civil Engineering. 2015, 33, 142-147 https://api.semanticscholar.org/CorpusID:41129643
dc.relation.referencesMohamed, S; Zainudin, E; Sapuan, S; Azaman, M; Arifin, A. (2018). Introduction to Natural Fiber Reinforced Vinyl Ester and Vinyl Polymer Composites. Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites. 2018, 1–25. https://doi.org/10.1016/B978-0 08-102160-6.00001-9
dc.relation.referencesNurazzi, N; Harussani, N; Aisyah, H; Ilyas, R; Norrrahim, M; Khalina, A; Abdullah, N. (2021). Treatments of natural fiber as reinforcement in polymer composites—a short review. IOP Conf. Ser.: Mater. Sci. Eng. Funct. Compos. Struct. 2021, 3 (2), 1047. https://doi. org/10.1088/2631-6331/abff36
dc.relation.referencesVelásquez, M; Peláez, J; Giraldo, D. (2016). Use of vegetable fibers in polymer matrix composites: a review with a view to their application in designing new products. Informador Técnico 2016, 80 (1), 77-86. https://doi.org/10.23850/22565035.324
dc.relation.referencesAthith, D; Sanjay, M; Gowda, T; Madhu, P; Arpitha, G; Yogesha, B; Omri, M. (2018). Ef fect of tungsten carbide on mechanical and tribological properties of jute/sisal/E-glass fabrics reinforced natural rubber/epoxy composites. Engineering. 2018, 48, 713–737.https://doi. org/10.1177/1528083717740765
dc.relation.referencesDíaz, G; Maradei, F; Vargas, G. (2019). Bagasse sugarcane fibers as reinforcement agents for natural composites: description and polymer composite applications. UIS Ing. 2019, 18 (4) 117-130. http://dx.doi.org/10.18273/revuin.v18n4-2019011
dc.relation.referencesChaquilla, G; Balandrán, R; Mendoza, A; Mercado, J. (2018). Propiedades y posibles aplicaciones de las proteínas de salvado de trigo. Biotecnología y ciencias agropecuarias. 2018, 12 (2), 137-147. http://dx.doi.org/10.29059/cienciauat.v12i2.883
dc.relation.referencesGómez, M; Zavala, R; Rivera, J; Mendoza, A; Díaz, N; Rangel, N. (2016). Compatibilidad de po liuretano modificado y poliácido acrílico en una red polimérica interpenetrada. Rev. Iberoam. Po límeros. 2016, 17 (3) 122-128 https://api.semanticscholar.org/CorpusID:192868624
dc.relation.referencesGonzález, Y; Salamanca, J; Vargas, J. (2018). The effect of potato starch modified as a coupling agent in polymer-wood fiber composites. Prospectiva. 2018, 16 (1), 107-113. https://doi. org/10.15665/rp.v16i1.1236
dc.relation.referencesManimaran, P; Saravanan, S; Sanjay, M; Siengchin, S; Jawaid, M; Khan, A. (2019). Char acterization of new cellulosic fiber: Dracaena reflexa as a reinforcement for polymer composite structures. J. Mater Res Technol. 2019, 8 (2): 1952-1963. https://doi.org/10.1016/j. jmrt.2018.12.015
dc.relation.referencesSanjay, M; Siengchin, S; Parameswaranpillai, J; Jawaid, M; Pruncu, C; Khan, A. (2019). A comprehensive review of techniques for natural fibers as reinforcement in composites: Prepara tion, processing and characterization. Carbohidr. Polym. 2019, 207, 108-121. https://doi. org/10.1016/j.carbpol.2018.11.083
dc.relation.referencesAzammi, A; Ilyas, R; Sapuan, S; Ibrahim, R; Atikah, M; Asrofi, M; Atiqah, A. (2020). Char acterization studies of biopolymeric matrix and cellulose fibres based composites related to func tionalized fibre-matrix interface. Interfaces in Particle and Fibre Reinforced Composites. 2020, 29–93. https://doi.org/10.1016/B978-0-08-102665-6.00003-0
dc.relation.referencesVinod, A; Sanjay, M; Suchart; S; Jyotishkumar, P. (2020). Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. J. Limpiar Prod. 2020. 258, 120978. https://doi.org/10.1016/j.jclepro.2020.120978
dc.relation.referencesMaradiaga, A; Wagner, E; Sette, R; Alves, J; Fernandes, S. (2017). Production of briquettes with Jatropha curcas shell and sugar cane bagasse. Bosque (Valdivia) 2017, 38 (3): 527-533. http://dx.doi.org/10.4067/S0717-92002017000300010
dc.relation.referencesVargas, C; Urrego, W; Arbeláez, M; Sánchez, C. (2019). Physicochemical behaviour of natural rubber composites when adding agroindustrial wastes as reinforcing fillers. Revista EIA. 2019, 16 (32) 129–149. https://doi.org/10.24050/reia.v16i32.1214
dc.relation.referencesBonilla, H; Armijos, H; Calderón, B. (2015). Efecto de tres pre-tratamientos de cáscara de banano para la obtención de jarabe glucosado mediante hidrólisis enzimática. Avances en Química. 2015, 10 (1), 79-82. https://www.redalyc.org/articulo.oa?id=93341009011
dc.relation.referencesFernandes, P; Rosa, M; Cioffidos, M; Beninidos, K; Milanesedos, A; Voorwalddos, H; Mu linari, D. (2015). Fibras vegetales en compuestos poliméricos: Una revisión. Polímeros. 2015, 25 (1), 9-22. http://dx.doi.org/10.1590/0104-1428.1722
dc.relation.referencesGowthaman, S; Nakashima, K; Kawasaki, S. (2018). A State-of-the-Art Review on Soil Reinforce ment Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions. Materials. 2018, 11 (4), 553; https://doi.org/10.3390/ma11040553
dc.relation.referencesSuárez, C; Restrepo, M; Quinchía, F; Mercado, A. (2017). Fibras vegetales colombianas como re fuerzo en compuestos de matriz polimérica. Revista Tecnura. 2017, 21 (51), 57-66. https:// doi.org/10.14483/udistrital.jour.tecnura.2017.1.a04
dc.relation.referencesMegashah, L; Ariffin, H; Zakaria, M; Hassan, M. (2018). Properties of Cellulose Extract from Different Types of Oil Palm Biomass. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 368, 012049. http://doi:10.1088/1757-899X/368/1/01204
dc.relation.referencesSalas, N; Gutiérrez, F; Murillo, L; Ureña, Y; Johnson, S; Baudrit, J; Gonzales, R. (2017). Synthesis and Reinforcement of Thermostable Polymers Using Renewable Resources. Jour nal of Renewable Materials. 2017, 5 (3-4), 313–322. https://doi.org/10.7569/ JRM.2017.634122
dc.relation.referencesSadeghi, S; Dadashian, F; Eslahi, N. (2019). Recycling chicken feathers to produce adsorbent porous keratin-based sponge. Int. J. Environ. Sci. Technol. 2019, 16 (2), 1119–1128. https:// doi.org/10.1007/s13762-018-1669-z
dc.relation.referencesSyafri, E; Kasim, A.; Abral, H; Asben, A. (2018). Cellulose nanofibers isolation and characteri zation from ramie using a chemical-ultrasonic treatment. J. Nat. Fibras. 2018, 16, 1145 1155 https://doi.org/10.1080/15440478.2018.1455073
dc.relation.referencesNaveen, J; Jawaid, M; Amuthakkannan, P; Chandrasekar, M. (2019). Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites. Mechanical and Phys ical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Compos ites. 2019, 427-440. http://dx.doi.org/10.1016/B978-0-08-102292-4.00021-7
dc.relation.referencesVarghese, A; Mittal, V. (2017). Surface modification of natural fibers. Biodegradable and Bio compatible Polymer Composites. 2017, 115-155. https://doi.org/10.1016/B978-0 08-100970-3.00005-5
dc.relation.referencesThakur, V. (2013). Green Composites from Natural Resources. 1st ed.; CRC Press: Boca Ratón, USA, 2013, Volumen 1, págs. 10. https://doi.org/10.1201/b16076
dc.relation.referencesNaveda, R; Montalvo, P; Pino L; Figueroa, L. (2019). Lignine remotion from rice husk pretreat ment by steam explosion. Sociedad Química del Perú. 2019, 85 (3)352-361. http:// dx.doi.org/10.37761/rsqp.v85i3.245
dc.relation.referencesAsim, M; Saba, N; Jawaid, M; Nasir, M. (2018). 12 - Potential of natural fiber/biomass filler-re inforced polymer composites in aerospace applications. Sustainable Composites for Aero space Applications. 2018, 253–268. https://doi.org/10.1016/B978-0-08-102131 6.00012-8
dc.relation.referencesDittenber, D; GangaRao, H. (2012). Critical review of recent publications on use of natural compos ites in infrastructure. Composites Part A: Applied Science and Manufacturing. 2012, 43 (8), 1419-1429. https://doi.org/10.1016/j.compositesa.2011.11.019
dc.relation.referencesNagaraj, K; Basavarajappa, S. (2016). Applications of biocomposite materials based on natural fibers from renewable resources: A review. Sci. Eng. Compos Mater. 2016, 23 (2), 123–133. http://dx.doi.org/10.1515/secm-2014-0088
dc.relation.referencesPecas, P; Carvalho, H; Salman, H; Leite, M. (2018). Natural Fibre Composites and TheirAp plications: A Review. J. Compos. Sci. 2018, 2 (4), 66. http://dx.doi.org/10.3390/ jcs2040066
dc.relation.referencesAsyraf, M; Ishak, S; Sapuan, S; Yidris, N; Ilyas, R; Rafidah, M; Razman, M. (2020). Po tential Application of Green Composites for Cross Arm Component in Transmission Tow er: A Brief Review. International Journal of Polymer Science. 2020, 15. https://doi. org/10.1155/2020/8878300
dc.relation.referencesKeya, K; Kona, N; Koly, F; Maraz, K; Islam, M; Khan, R. (2019). Natural fiber reinforced polymer composites: History, types, advantages, and applications. Mater Eng. Res. 2019, 1 (2): 69 85. https://doi.org/10.25082/MER.2019.02.006
dc.relation.referencesVaisanen, T; Das, O; Tomppo, I. (2017). A review on new bio-based constituents for natural fi ber-polymer composites. Journal of Cleaner Production. 2017, 149, 582-596. http://dx. doi.org/10.1016/j.jclepro.2017.02.132
dc.relation.referencesMaslinda, AB; Majid, MSA; Ridzuan, MJM; Afendi, M.; Gibson, AG. (2017). Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites. Compos. Struct. 2017, 167, 227–237 https://doi.org/10.1016/j.com pstruct.2017.02.023
dc.relation.referencesGurunathan, T; Mohanty, S; Sanjay K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Parte A: Appl. Sci. Ma nuf. 2015, 77, 1–25 http://dx.doi.org/10.1016%2Fj.compositesa.2015.06.007
dc.relation.referencesBordoloi, S; Garg, A; Sekharan, S. (2017). A Review of Physio-Biochemical Properties of Nat ural Fibers and Their Application in Soil Reinforcement. Adv. Civ. Ing. Mater. 2017, 6 (1), 323–359. https://doi.org/10.1520/ACEM20160076
dc.relation.referencesPickering, K; Efendy, M; Le, T. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Compos. Parte A- Solicitud Sci. 2016, 83, 98-112. https://doi.org/10.1016/j.compositesa.2015.08.038
dc.relation.referencesPreneron, AL; Aubert, JE; Magniont, C; Tribout, C; Bertron, A. (2016). Plant aggregates and fibers in earth construction materials: A review. Construction and Building Materials. 2016, 111, 719–734. https://doi.org/10.1016/j.conbuildmat.2016.02.119
dc.relation.referencesKumar, A; Vlach, T; Laiblova, L; Hrouda, M; Kasal, B; Tywoniak, J; Hajek, P. (2016). Engi neered bamboo scrimber: Influence of density on the mechanical and water absorp tion properties. Construction and Building Materials. 2016, 127, 815–827. https:// doi.org/10.1016/j.conbuildmat.2016.10.069
dc.relation.referencesChen, Y; Su, N; Zhang, K; Zhu, S; Zhu, Z; Qin, W; Yang, Y; Shi, Y; Fan, S; Wang, Z; Guo, Y. (2018). Effect of fiber surface treatment on structure, moisture absorption and mechanical prop erties of luffa sponge fiber bundles. Industrial Crops and Products. 2018 123, 341–352 https://doi.org/10.1016/j.indcrop.2018.06.079
dc.relation.referencesDebeli, D; Qin, Z; Guo, J. (2018). Study on the Pre-Treatment, Physical and Chemical Properties of Ramie Fibers Reinforced Poly (Lactic Acid) (PLA) Biocomposite. Journal of Natural Fibers. 2018, 15, 596–610. https://doi.org/10.1080/15440478.2017.1349711
dc.relation.referencesSenthilkumar, K; Saba, N; Jawaid, M; Siengchin, S. (2019). Effect of Alkali Treatment on Me chanical and Morphological Properties of Pineapple Leaf Fibre/Polyester Composites. J. Polym. Reinar. 2019, 27, 1191–1201. https://doi.org/10.1007/s10924-019-01418-x
dc.relation.referencesYu, H; Wang, X; Petru, M. (2019). The effect of surface treatment on the creep behavior of flax fiber reinforced composites under hygrothermal aging conditions. Constr. Construir. Mater. 2019, 208, 220-227. https://doi.org/10.1016/j.conbuildmat.2019.03.001
dc.relation.referencesHalip, J; Hua, L; Ashaari, Z; Tahir, P; Chen, L; Uyup, M. (2018). 8 - Effect of treatment on water absorption behavior of natural fiber–reinforced polymer composites. Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. 2018, 6, 141-156. https://doi.org/10.1016/B978-0-08-102292-4.00008-4
dc.relation.referencesDolez, P; Arfaoui, M; Dube, M; David, É. (2017). Hydrophobic treatments for natural fibers based on metal oxide nanoparticles and fatty acids. Proc. Ing. 2017, 200, 81-88. https://doi. org/10.1016/j.proeng.2017.07.013
dc.relation.referencesPreet Singh, J; Dhawan, V; Singh, S; Jangid, K. (2017). Study of Effect of Surface Treatment on Mechanical Properties of Natural Fiber Reinforced Composites. Mater. Hoy Proc. 2017, 4, 2793–2799. https://doi.org/10.1016/j.matpr.2017.02.158
dc.relation.referencesSenthilkumar, K; Saba, N; Rajini, N; Chandrasekar, M; Jawaid, M; Siengchin, S; Othman, Y. (2018). Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review. Constr. Construir. Mater. 2018, 174, 713–729. https://doi.org/10.1016/j.conbuild mat.2018.04.143
dc.relation.referencesSaravanakumaar, A; Senthilkumar, A; Saravanakumar, S; Sanjay, M. (2018). Impact of alkali treatment on physico-chemical, thermal, structural and tensile properties of Carica papaya bark fibers. IPAC. 2018, 23, 529–536. https://doi.org/10.1080/1023666X.2018.1501931
dc.relation.referencesAtiqah, A; Jawaid, M; Ishak, M; Sapuan, S. (2018). Effect of Alkali and Silane Treatments on Mechanical and Interfacial Bonding Strength of Sugar Palm Fibers with Thermoplastic Polyure thane. Journal of Na
dc.relation.referencesSepe, R; Bollino, F; Boccarusso, L; Caputo, F. (2018). Influence of chemical treatments on me chanical properties of hemp fiber reinforced composites. Compos. Part B Eng. 2018, 133, 210-217. https://doi.org/10.1016/j.compositesb.2017.09.030
dc.relation.referencesBodur, M; Bakkal, M; Sonmez, H. (2016). The effects of different chemical treatment methods on the mechanical and thermal properties of textile fiber reinforced polymer composites. J. Compos. Mater. 2016, 50, 3817–3830. https://doi.org/10.1177/0021998315626256
dc.relation.referencesMasłowski, M; Miedzianowska, J; Strzelec, K. (2018). Influence of wheat, rye, and tritica le straw on the properties of natural rubber composites. Adv. Polym. Technol. 2018, 37, 2866. https://doi.org/10.1002/adv.21958
dc.relation.referencesAli, M. (2016). Use of coconut fibre reinforced concrete and coconut-fibre ropes for seismic-resistant construction. Mater. Construcc. 2016, 66 (321), 073. http://dx.doi.org/10.3989/ mc.2016.01015
dc.relation.referencesMoonart, U; Utara, S. (2019). Effect of surface treatments and filler loading on the properties of hemp fiber/natural rubber composites. Cellulose. 2019, 26, 7271-7295. https://doi. org/10.1007/s10570-019-02611-w
dc.relation.referencesSuwanruji, P; Thuechart, T; Smitthipong, W; Chollakup, R. (2016). Modification of pine apple leaf fiber surfaces with silane and isocyanate for reinforcing thermoplastic. Jour nal of Thermoplastic Composite Materials. 2016, 30 (10), 1344-1360. http://dx.doi. org/10.1177/0892705716632860
dc.relation.referencesHosseini, S. (2020). Natural fiber polymer nanocomposites. Fiber-Reinforced Nanocomposites: Fundamentals and Applications. 2020, 279–299. https://doi.org/10.1016/B978-0 12-819904-6.00013-X
dc.relation.referencesAdekunle, K. (2015). Surface Treatments of Natural Fibres—A. Open Journal of Polymer Chem istry. 2015, 05 (3): 41–46. http://dx.doi.org/10.4236/ojpchem.2015.53005
dc.relation.referencesBalakrishnan, P; John, M; Pothen, L; Sreekala, M; Thomas, S. (2016). 12 - Natural fibre and polymer matrix composites and their applications in aerospace engineering. Advanced Compos ite Materials for Aerospace Engineering. 2016, 365–383. https://doi.org/10.1016/ B978-0-08-100037-3.00012-2
dc.relation.referencesHassani, F; Merbahi, N; Oushabi, A; Elfadili, M; Kammouni, A; Oueldna, N. (2020). Effects of corona discharge treatment on surface and mechanical properties of Aloe Vera fibers. Mater Today Proc. 2020, 24, 46–51. https://doi.org/10.1016/j.matpr.2019.07.527
dc.relation.referencesAzad, N; Asril, M; Shah, M. (2021). A Review on Development of Natural Fibre Composites for Con struction Applications. Journal of Materials Science and Chemical Engineering. 2021, 9, 1-9. https://doi.org/10.4236/msce.2021.97001
dc.relation.referencesLópez, D; Rojas, A. (2018). Factors that influence the mechanical, physical and thermal properties of wood-plastic composite materials. Between Science and Engineering. 2018, 12 (23), 93 102. http://dx.doi.org/10.31908/19098367.3708
dc.relation.referencesWahab, R; Samsi, H; Mustafa, M; Mat Razat, M; Yusof, M. (2016). Physical, mechanical and morphological studies on Bio-composite mixture of oil palm frond and Kenaf Bast Fibers. Journal of Plant Sciences. 2016, 11 (1-3), 22-30. https://dx.doi.org/10.3923/jps.2016.22.30
dc.relation.referencesRamamoorthy, S; Skrifvars, M; Persson, A. (2015). A Review of Natural Fibers Used in Biocom posites: Plant, Animal and Regenerated Cellulose Fibers. Polym Rev. 2015, 55 (1) 107–162. https://doi.org/10.1080/15583724.2014.971124
dc.relation.referencesIlyas, R; Sapuan, S; Ibrahim, R; Abral, H; Ishak, M; Zainudin, E; Atiqah, A; Atikah, M; Syafri, E; Asrofi, M; Jumaidin, R. (2020). Thermal, Biodegradability and Water Barrier Properties of Bio-Nanocomposites Based on Plasticised Sugar Palm Starch and Nanofibrillated Celluloses from Sugar Palm Fibres. Journal of Biobased Materials and Bioenergy. 2020, 14 (2), 234–248. https://doi.org/10.1166/jbmb.2020.1951
dc.relation.referencesNurazzi, N; Asyraf, M; Khalina, A; Abdullah, N; Aisyah, H; Rafiqah, S; Sabaruddin, F; Kamarudin, S; Norrrahim, M; Ilyas, R; Sapuan, S. (2021). A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers. 2021, 13 (4), 646. https://doi.org/10.3390/polym13040646
dc.relation.referencesMonteiro, S; Pereira, A; Ferreira, C; Pereira, E; Ponde, R; Salgado, F. (2018). Performance of Plain Woven Jute Fabric-Reinforced Polyester Matrix Composite in Multilayered Ballistic System. Polymers. 2018, 10 (3), 230. http://doi.org/10.3390/polym10030230
dc.relation.referencesSapuan, S; Purushothman, K; Sanyang, M; Mansor, M. (2018). Design and Fabrication of Kenaf Fibre Reinforced Polymer Composites for Portable Laptop Table. Lignocellulosic Composite Materials. 2018, 323–356. https://doi.org/10.1007/978-3-319-68696-7_8
dc.relation.referencesRohit, K; Dixit, S. (2016). A Review - Future Aspect of Natural Fiber Reinforced Compos ite. Polymers from Renewable Resources. 2016, 7, 43-59. http://dx.doi.org/ 10.1177/204124791600700202
dc.relation.referencesGupta, G; Kumar, A; Tyagi, R; Kumar, S. Application and Future of Composite Materials: A Review. IJIRSET. 2016, 5 (5): 6907-6911. DOI:10.15680/IJIRSET.2016.0505041
dc.relation.referencesZin, M; Abdan, K; Norizan, M; Mazlan, N. (2018). The effects of alkali treatment on the mechanical and chemical properties of pineapple leaf fibres (PALF) and adhesion to epoxy resin. J. Sci. Tech nol. 2018, 26, 161-176. http://dx.doi.org/10.1088/1757-899X/368/1/012035
dc.relation.referencesDhakal, H. (2015). Mechanical performance of PC-based biocomposites. Biocomposites - De sign and Mechanical Performance. 2015 303-317. https://doi.org/10.1016/B978-1 78242-373-7.00004-4
dc.relation.referencesJariwala, H; Jain, P. (2019). A review on mechanical behavior of natural fiber reinforced polymer com posites and its applications. Journal of Reinforced Plastics and Composites. 2019, 38 (10), 441-453 https://doi.org/10.1177%2F0731684419828524
dc.relation.referencesDemelo, R; Marques, M; Navard, P; Duque, N. (2017). Degradation studies and mechanical proper ties of treated curauá fibers and microcrystalline cellulose in composites with polyamide 6. J. Com pos. Mater. 2017, 51 (25), 3481–3489. https://doi.org/10.1177/0021998317690446
dc.rightsDerechos Reservados Universidad de La Guajira.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.proposalResiduos poliméricosspa
dc.subject.proposalBiodegradabilidadspa
dc.subject.proposalBio-compuestosspa
dc.subject.proposalPolicloruro de vinilospa
dc.titlePolímeros sostenibles. Una propuesta innovadora para su reciclaje en la agroindustriaspa
dc.typeLibro
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/book
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
person.identifier.orcid0000-0001-6082-5651
person.identifier.orcid0000-0002-3426-2098
relation.isAuthorOfPublication160388cd-d0d9-4a27-a1a0-b689892d8b18
relation.isAuthorOfPublication1cb62011-f4e2-48c5-bce6-88db843cea48
relation.isAuthorOfPublication.latestForDiscovery160388cd-d0d9-4a27-a1a0-b689892d8b18

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
86. Polímeros sostenibles.pdf
Tamaño:
5.39 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones