Publicación: Polímeros sostenibles. Una propuesta innovadora para su reciclaje en la agroindustria
dc.contributor.author | FUENTES MOLINA, NATALIA | |
dc.contributor.author | ARROYO DE LA OSSA, MIRYAM YORLENIS | |
dc.coverage.spatial | Departamento de La Guajira | |
dc.date.accessioned | 2025-10-03T22:10:51Z | |
dc.date.available | 2025-10-03T22:10:51Z | |
dc.date.issued | 2025 | |
dc.description | Incluye índice de tablas y figuras | spa |
dc.description.abstract | La transformación de los residuos poliméricos en productos comercialmente via bles con diversas aplicaciones ingenieriles viene avanzando en forma significati va los últimos años, siendo una alternativa ecológica innovadora que plantea el aprovechamiento de las fibras residuales de la agroindustria, como elemento de refuerzo en las matrices de residuos poliméricos, por su fácil accesibilidad, reno vabilidad, no toxicidad, baja densidad, reducción de costos, biodegradabilidad y propiedades mecánicas satisfactorias, convirtiéndolos en cambios sostenibles. De manera particular, en este libro se analizan aspectos claves de los bio-com puestos emergentes de materiales poliméricos residuales y fibras naturales via bles; exploramos, además, la composición química, así como las propiedades físicas, mecánicas y térmicas de las matrices poliméricos reforzados con las fibras resultantes, para finalmente proponer el reciclaje como una estrategia innovado ra para la valorización de estos residuos en el sector agrícola e industrial. En términos generales, se abordan aspectos técnicos claves para: i. Establecer la composición y características de los residuos poliméricos recuperados que permitan obtener buenas interfases en las matrices; ii. Analizar el efecto que con fieren los refuerzos naturales a las matrices elaboradas, logrando finalmente; iii. Validar los posibles usos en la elaboración de productos agrícolas e industriales. En este libro, se crea un marco para el reciclaje de los polímeros residuales y las fibras naturales en la elaboración de productos con aplicaciones agrícolas e industriales que consideran las posibles formas de poner en funcionamiento la innovación sostenible y la conciencia ambiental, como camino para avanzar en la implementación de acciones con un direccionamiento estratégico, en el que se explican las diferentes metodologías, seguidos por estudios de casos, con los hallazgos, limitaciones y perspectivas futuras, como alternativa económicamente viable y socialmente segura. | spa |
dc.description.edition | Primera edición | |
dc.description.tableofcontents | Presentación Introducción Avances de los polímeros residuales reforzados Tendencias del aprovechamiento de los polímeros residuales reforzados Experiencias investigativas de los refuerzos naturales en matrices de residuos poliméricos Desafíos emergentes del reciclaje de los poliméros residuales Generalidades de los poliméros residuales Residuos poliméricos Clasificación de los residuos poliméricos Reciclaje de polímeros residuales Métodos y técnicas de reciclaje de polímeros residuales Reciclaje mecánico Reciclaje químico Reciclaje térmico Análisis de la fibras naturales residuales Fibras naturales alternativas sostenibles Composición química de las fibras naturales Propiedades de las fibras naturales Posibles tratamientos aplicados a las fibras naturales residuales Materiales compuestos propiedades y perspectivas Materiales compuestos Materiales compuestos de polímeros residuales reforzados con fibras naturales y sus propiedades Refuerzos de matrices poliméricas Investigaciones de los refuerzos con hallazgos importantes como alternativa viable y efectiva de reciclaje Investigaciones de matrices poliméricas con fibras sintéticas Investigaciones de matrices poliméricas con fibras naturales Aplicaciones viables del reciclaje de los polímeros residuales reforzados Prototipo de las bandejas para plántulas Prototipo de película de protección de suelos Prototipo de pantallas especiales para cubiertas de invernaderos Prototipo de los contenedores flexibles Prototipo de mangueras flexibles para riego con acoples Prototipo de tuberías flexibles para riego con acoples Prototipo de contenedores de sustancias químicas Prototipo de comederos y bebederos de animales Prototipo de vallas espaciadoras Prototipo de geo-membranas Prototipo de carpa o cobertizo Prototipo de las mantas de protección de frutos Consideraciones finales Referencias bibliográficas | spa |
dc.format.extent | 71 Páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.isbn | 978-628-7718-49-4 | |
dc.identifier.uri | https://repositoryinst.uniguajira.edu.co/handle/uniguajira/1668 | |
dc.language.iso | spa | |
dc.publisher | Universidad de La Guajira | |
dc.publisher.place | Distrito Especial, Turístico y Cultural de Riohacha | |
dc.relation.references | Aaliya, B; Sunooj, K; Lackner; M. (2021). Biopolymer composites: A review. International Journal of Biobased Plastics. 2021, 3, 40-84. https://doi.org/10.1080/24759651.2021.1881 214 | |
dc.relation.references | Azman, M; Asyraf, M; Khalina, A; Petru, M; Ruzaidi, C; Sapuan, S; Wan Nik, W; Ishak, M; Ilyas, R; Suriani, M. (2021). Natural Fiber Reinforced Composite Material for Product Design: A Short Review. Polímers. 2021, 13 (12), 1917. https://doi.org/10.3390/polym13121917 | |
dc.relation.references | Ganesan, C; Joanna, P. (2018). Fatigue Life and Residual Strength prediction of GFRP Composites: An Experimental and Theoretical approach. Lat. Am. j. solidsstruct. 2018, 15 (7), 72. https://doi.org/10.1590/1679-78255095 | |
dc.relation.references | Roy, K; Debnath, S; Pongwisuthiruchte, A; Potiyaraj, P. (2021). Recent advances of natural fibers based green rubber composites: Properties, current status, and future perspectives. Appliepoly mer. 2021, 138 (35), 1-17. https://doi.org/10.1002/app.50866 | |
dc.relation.references | Gowda, Y; Sanjay, M; Bhat, P; Madhu, P; Senthamaraikannan; Yogesha, B. (2018). Polymer matrix-natural fiber composites: An overview. Cogent Engineering. 2018, 5 (1) 13. https:// doi.org/10.1080/23311916.2018.1446667 | |
dc.relation.references | Thyavihalli, Y; Rangappa, S; Parameswaranpillai, J; Siengchin, S. (2019). Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Compre hensive Review. Front. Mater. 2019, 6, 226. https://doi.org/10.3389/fmats.2019.00226 | |
dc.relation.references | Tri-Dung, Ngo. (2017). Natural Fibers for Sustainable Bio-Composites. Intechopen: Edmonton, Alberta, Canadá. 2017. http://dx.doi.org/10.5772/intechopen.71012 | |
dc.relation.references | Sonar, T; Patil, S; Deshmukh, V; Acharya, R. (2015). Natural Fiber Reinforced Polymer Composite Material-A Review. Journal of Mechanical and Civil Engineering. 2015, 33, 142-147 https://api.semanticscholar.org/CorpusID:41129643 | |
dc.relation.references | Mohamed, S; Zainudin, E; Sapuan, S; Azaman, M; Arifin, A. (2018). Introduction to Natural Fiber Reinforced Vinyl Ester and Vinyl Polymer Composites. Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites. 2018, 1–25. https://doi.org/10.1016/B978-0 08-102160-6.00001-9 | |
dc.relation.references | Nurazzi, N; Harussani, N; Aisyah, H; Ilyas, R; Norrrahim, M; Khalina, A; Abdullah, N. (2021). Treatments of natural fiber as reinforcement in polymer composites—a short review. IOP Conf. Ser.: Mater. Sci. Eng. Funct. Compos. Struct. 2021, 3 (2), 1047. https://doi. org/10.1088/2631-6331/abff36 | |
dc.relation.references | Velásquez, M; Peláez, J; Giraldo, D. (2016). Use of vegetable fibers in polymer matrix composites: a review with a view to their application in designing new products. Informador Técnico 2016, 80 (1), 77-86. https://doi.org/10.23850/22565035.324 | |
dc.relation.references | Athith, D; Sanjay, M; Gowda, T; Madhu, P; Arpitha, G; Yogesha, B; Omri, M. (2018). Ef fect of tungsten carbide on mechanical and tribological properties of jute/sisal/E-glass fabrics reinforced natural rubber/epoxy composites. Engineering. 2018, 48, 713–737.https://doi. org/10.1177/1528083717740765 | |
dc.relation.references | Díaz, G; Maradei, F; Vargas, G. (2019). Bagasse sugarcane fibers as reinforcement agents for natural composites: description and polymer composite applications. UIS Ing. 2019, 18 (4) 117-130. http://dx.doi.org/10.18273/revuin.v18n4-2019011 | |
dc.relation.references | Chaquilla, G; Balandrán, R; Mendoza, A; Mercado, J. (2018). Propiedades y posibles aplicaciones de las proteínas de salvado de trigo. Biotecnología y ciencias agropecuarias. 2018, 12 (2), 137-147. http://dx.doi.org/10.29059/cienciauat.v12i2.883 | |
dc.relation.references | Gómez, M; Zavala, R; Rivera, J; Mendoza, A; Díaz, N; Rangel, N. (2016). Compatibilidad de po liuretano modificado y poliácido acrílico en una red polimérica interpenetrada. Rev. Iberoam. Po límeros. 2016, 17 (3) 122-128 https://api.semanticscholar.org/CorpusID:192868624 | |
dc.relation.references | González, Y; Salamanca, J; Vargas, J. (2018). The effect of potato starch modified as a coupling agent in polymer-wood fiber composites. Prospectiva. 2018, 16 (1), 107-113. https://doi. org/10.15665/rp.v16i1.1236 | |
dc.relation.references | Manimaran, P; Saravanan, S; Sanjay, M; Siengchin, S; Jawaid, M; Khan, A. (2019). Char acterization of new cellulosic fiber: Dracaena reflexa as a reinforcement for polymer composite structures. J. Mater Res Technol. 2019, 8 (2): 1952-1963. https://doi.org/10.1016/j. jmrt.2018.12.015 | |
dc.relation.references | Sanjay, M; Siengchin, S; Parameswaranpillai, J; Jawaid, M; Pruncu, C; Khan, A. (2019). A comprehensive review of techniques for natural fibers as reinforcement in composites: Prepara tion, processing and characterization. Carbohidr. Polym. 2019, 207, 108-121. https://doi. org/10.1016/j.carbpol.2018.11.083 | |
dc.relation.references | Azammi, A; Ilyas, R; Sapuan, S; Ibrahim, R; Atikah, M; Asrofi, M; Atiqah, A. (2020). Char acterization studies of biopolymeric matrix and cellulose fibres based composites related to func tionalized fibre-matrix interface. Interfaces in Particle and Fibre Reinforced Composites. 2020, 29–93. https://doi.org/10.1016/B978-0-08-102665-6.00003-0 | |
dc.relation.references | Vinod, A; Sanjay, M; Suchart; S; Jyotishkumar, P. (2020). Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. J. Limpiar Prod. 2020. 258, 120978. https://doi.org/10.1016/j.jclepro.2020.120978 | |
dc.relation.references | Maradiaga, A; Wagner, E; Sette, R; Alves, J; Fernandes, S. (2017). Production of briquettes with Jatropha curcas shell and sugar cane bagasse. Bosque (Valdivia) 2017, 38 (3): 527-533. http://dx.doi.org/10.4067/S0717-92002017000300010 | |
dc.relation.references | Vargas, C; Urrego, W; Arbeláez, M; Sánchez, C. (2019). Physicochemical behaviour of natural rubber composites when adding agroindustrial wastes as reinforcing fillers. Revista EIA. 2019, 16 (32) 129–149. https://doi.org/10.24050/reia.v16i32.1214 | |
dc.relation.references | Bonilla, H; Armijos, H; Calderón, B. (2015). Efecto de tres pre-tratamientos de cáscara de banano para la obtención de jarabe glucosado mediante hidrólisis enzimática. Avances en Química. 2015, 10 (1), 79-82. https://www.redalyc.org/articulo.oa?id=93341009011 | |
dc.relation.references | Fernandes, P; Rosa, M; Cioffidos, M; Beninidos, K; Milanesedos, A; Voorwalddos, H; Mu linari, D. (2015). Fibras vegetales en compuestos poliméricos: Una revisión. Polímeros. 2015, 25 (1), 9-22. http://dx.doi.org/10.1590/0104-1428.1722 | |
dc.relation.references | Gowthaman, S; Nakashima, K; Kawasaki, S. (2018). A State-of-the-Art Review on Soil Reinforce ment Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions. Materials. 2018, 11 (4), 553; https://doi.org/10.3390/ma11040553 | |
dc.relation.references | Suárez, C; Restrepo, M; Quinchía, F; Mercado, A. (2017). Fibras vegetales colombianas como re fuerzo en compuestos de matriz polimérica. Revista Tecnura. 2017, 21 (51), 57-66. https:// doi.org/10.14483/udistrital.jour.tecnura.2017.1.a04 | |
dc.relation.references | Megashah, L; Ariffin, H; Zakaria, M; Hassan, M. (2018). Properties of Cellulose Extract from Different Types of Oil Palm Biomass. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 368, 012049. http://doi:10.1088/1757-899X/368/1/01204 | |
dc.relation.references | Salas, N; Gutiérrez, F; Murillo, L; Ureña, Y; Johnson, S; Baudrit, J; Gonzales, R. (2017). Synthesis and Reinforcement of Thermostable Polymers Using Renewable Resources. Jour nal of Renewable Materials. 2017, 5 (3-4), 313–322. https://doi.org/10.7569/ JRM.2017.634122 | |
dc.relation.references | Sadeghi, S; Dadashian, F; Eslahi, N. (2019). Recycling chicken feathers to produce adsorbent porous keratin-based sponge. Int. J. Environ. Sci. Technol. 2019, 16 (2), 1119–1128. https:// doi.org/10.1007/s13762-018-1669-z | |
dc.relation.references | Syafri, E; Kasim, A.; Abral, H; Asben, A. (2018). Cellulose nanofibers isolation and characteri zation from ramie using a chemical-ultrasonic treatment. J. Nat. Fibras. 2018, 16, 1145 1155 https://doi.org/10.1080/15440478.2018.1455073 | |
dc.relation.references | Naveen, J; Jawaid, M; Amuthakkannan, P; Chandrasekar, M. (2019). Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites. Mechanical and Phys ical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Compos ites. 2019, 427-440. http://dx.doi.org/10.1016/B978-0-08-102292-4.00021-7 | |
dc.relation.references | Varghese, A; Mittal, V. (2017). Surface modification of natural fibers. Biodegradable and Bio compatible Polymer Composites. 2017, 115-155. https://doi.org/10.1016/B978-0 08-100970-3.00005-5 | |
dc.relation.references | Thakur, V. (2013). Green Composites from Natural Resources. 1st ed.; CRC Press: Boca Ratón, USA, 2013, Volumen 1, págs. 10. https://doi.org/10.1201/b16076 | |
dc.relation.references | Naveda, R; Montalvo, P; Pino L; Figueroa, L. (2019). Lignine remotion from rice husk pretreat ment by steam explosion. Sociedad Química del Perú. 2019, 85 (3)352-361. http:// dx.doi.org/10.37761/rsqp.v85i3.245 | |
dc.relation.references | Asim, M; Saba, N; Jawaid, M; Nasir, M. (2018). 12 - Potential of natural fiber/biomass filler-re inforced polymer composites in aerospace applications. Sustainable Composites for Aero space Applications. 2018, 253–268. https://doi.org/10.1016/B978-0-08-102131 6.00012-8 | |
dc.relation.references | Dittenber, D; GangaRao, H. (2012). Critical review of recent publications on use of natural compos ites in infrastructure. Composites Part A: Applied Science and Manufacturing. 2012, 43 (8), 1419-1429. https://doi.org/10.1016/j.compositesa.2011.11.019 | |
dc.relation.references | Nagaraj, K; Basavarajappa, S. (2016). Applications of biocomposite materials based on natural fibers from renewable resources: A review. Sci. Eng. Compos Mater. 2016, 23 (2), 123–133. http://dx.doi.org/10.1515/secm-2014-0088 | |
dc.relation.references | Pecas, P; Carvalho, H; Salman, H; Leite, M. (2018). Natural Fibre Composites and TheirAp plications: A Review. J. Compos. Sci. 2018, 2 (4), 66. http://dx.doi.org/10.3390/ jcs2040066 | |
dc.relation.references | Asyraf, M; Ishak, S; Sapuan, S; Yidris, N; Ilyas, R; Rafidah, M; Razman, M. (2020). Po tential Application of Green Composites for Cross Arm Component in Transmission Tow er: A Brief Review. International Journal of Polymer Science. 2020, 15. https://doi. org/10.1155/2020/8878300 | |
dc.relation.references | Keya, K; Kona, N; Koly, F; Maraz, K; Islam, M; Khan, R. (2019). Natural fiber reinforced polymer composites: History, types, advantages, and applications. Mater Eng. Res. 2019, 1 (2): 69 85. https://doi.org/10.25082/MER.2019.02.006 | |
dc.relation.references | Vaisanen, T; Das, O; Tomppo, I. (2017). A review on new bio-based constituents for natural fi ber-polymer composites. Journal of Cleaner Production. 2017, 149, 582-596. http://dx. doi.org/10.1016/j.jclepro.2017.02.132 | |
dc.relation.references | Maslinda, AB; Majid, MSA; Ridzuan, MJM; Afendi, M.; Gibson, AG. (2017). Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites. Compos. Struct. 2017, 167, 227–237 https://doi.org/10.1016/j.com pstruct.2017.02.023 | |
dc.relation.references | Gurunathan, T; Mohanty, S; Sanjay K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Parte A: Appl. Sci. Ma nuf. 2015, 77, 1–25 http://dx.doi.org/10.1016%2Fj.compositesa.2015.06.007 | |
dc.relation.references | Bordoloi, S; Garg, A; Sekharan, S. (2017). A Review of Physio-Biochemical Properties of Nat ural Fibers and Their Application in Soil Reinforcement. Adv. Civ. Ing. Mater. 2017, 6 (1), 323–359. https://doi.org/10.1520/ACEM20160076 | |
dc.relation.references | Pickering, K; Efendy, M; Le, T. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Compos. Parte A- Solicitud Sci. 2016, 83, 98-112. https://doi.org/10.1016/j.compositesa.2015.08.038 | |
dc.relation.references | Preneron, AL; Aubert, JE; Magniont, C; Tribout, C; Bertron, A. (2016). Plant aggregates and fibers in earth construction materials: A review. Construction and Building Materials. 2016, 111, 719–734. https://doi.org/10.1016/j.conbuildmat.2016.02.119 | |
dc.relation.references | Kumar, A; Vlach, T; Laiblova, L; Hrouda, M; Kasal, B; Tywoniak, J; Hajek, P. (2016). Engi neered bamboo scrimber: Influence of density on the mechanical and water absorp tion properties. Construction and Building Materials. 2016, 127, 815–827. https:// doi.org/10.1016/j.conbuildmat.2016.10.069 | |
dc.relation.references | Chen, Y; Su, N; Zhang, K; Zhu, S; Zhu, Z; Qin, W; Yang, Y; Shi, Y; Fan, S; Wang, Z; Guo, Y. (2018). Effect of fiber surface treatment on structure, moisture absorption and mechanical prop erties of luffa sponge fiber bundles. Industrial Crops and Products. 2018 123, 341–352 https://doi.org/10.1016/j.indcrop.2018.06.079 | |
dc.relation.references | Debeli, D; Qin, Z; Guo, J. (2018). Study on the Pre-Treatment, Physical and Chemical Properties of Ramie Fibers Reinforced Poly (Lactic Acid) (PLA) Biocomposite. Journal of Natural Fibers. 2018, 15, 596–610. https://doi.org/10.1080/15440478.2017.1349711 | |
dc.relation.references | Senthilkumar, K; Saba, N; Jawaid, M; Siengchin, S. (2019). Effect of Alkali Treatment on Me chanical and Morphological Properties of Pineapple Leaf Fibre/Polyester Composites. J. Polym. Reinar. 2019, 27, 1191–1201. https://doi.org/10.1007/s10924-019-01418-x | |
dc.relation.references | Yu, H; Wang, X; Petru, M. (2019). The effect of surface treatment on the creep behavior of flax fiber reinforced composites under hygrothermal aging conditions. Constr. Construir. Mater. 2019, 208, 220-227. https://doi.org/10.1016/j.conbuildmat.2019.03.001 | |
dc.relation.references | Halip, J; Hua, L; Ashaari, Z; Tahir, P; Chen, L; Uyup, M. (2018). 8 - Effect of treatment on water absorption behavior of natural fiber–reinforced polymer composites. Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. 2018, 6, 141-156. https://doi.org/10.1016/B978-0-08-102292-4.00008-4 | |
dc.relation.references | Dolez, P; Arfaoui, M; Dube, M; David, É. (2017). Hydrophobic treatments for natural fibers based on metal oxide nanoparticles and fatty acids. Proc. Ing. 2017, 200, 81-88. https://doi. org/10.1016/j.proeng.2017.07.013 | |
dc.relation.references | Preet Singh, J; Dhawan, V; Singh, S; Jangid, K. (2017). Study of Effect of Surface Treatment on Mechanical Properties of Natural Fiber Reinforced Composites. Mater. Hoy Proc. 2017, 4, 2793–2799. https://doi.org/10.1016/j.matpr.2017.02.158 | |
dc.relation.references | Senthilkumar, K; Saba, N; Rajini, N; Chandrasekar, M; Jawaid, M; Siengchin, S; Othman, Y. (2018). Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review. Constr. Construir. Mater. 2018, 174, 713–729. https://doi.org/10.1016/j.conbuild mat.2018.04.143 | |
dc.relation.references | Saravanakumaar, A; Senthilkumar, A; Saravanakumar, S; Sanjay, M. (2018). Impact of alkali treatment on physico-chemical, thermal, structural and tensile properties of Carica papaya bark fibers. IPAC. 2018, 23, 529–536. https://doi.org/10.1080/1023666X.2018.1501931 | |
dc.relation.references | Atiqah, A; Jawaid, M; Ishak, M; Sapuan, S. (2018). Effect of Alkali and Silane Treatments on Mechanical and Interfacial Bonding Strength of Sugar Palm Fibers with Thermoplastic Polyure thane. Journal of Na | |
dc.relation.references | Sepe, R; Bollino, F; Boccarusso, L; Caputo, F. (2018). Influence of chemical treatments on me chanical properties of hemp fiber reinforced composites. Compos. Part B Eng. 2018, 133, 210-217. https://doi.org/10.1016/j.compositesb.2017.09.030 | |
dc.relation.references | Bodur, M; Bakkal, M; Sonmez, H. (2016). The effects of different chemical treatment methods on the mechanical and thermal properties of textile fiber reinforced polymer composites. J. Compos. Mater. 2016, 50, 3817–3830. https://doi.org/10.1177/0021998315626256 | |
dc.relation.references | Masłowski, M; Miedzianowska, J; Strzelec, K. (2018). Influence of wheat, rye, and tritica le straw on the properties of natural rubber composites. Adv. Polym. Technol. 2018, 37, 2866. https://doi.org/10.1002/adv.21958 | |
dc.relation.references | Ali, M. (2016). Use of coconut fibre reinforced concrete and coconut-fibre ropes for seismic-resistant construction. Mater. Construcc. 2016, 66 (321), 073. http://dx.doi.org/10.3989/ mc.2016.01015 | |
dc.relation.references | Moonart, U; Utara, S. (2019). Effect of surface treatments and filler loading on the properties of hemp fiber/natural rubber composites. Cellulose. 2019, 26, 7271-7295. https://doi. org/10.1007/s10570-019-02611-w | |
dc.relation.references | Suwanruji, P; Thuechart, T; Smitthipong, W; Chollakup, R. (2016). Modification of pine apple leaf fiber surfaces with silane and isocyanate for reinforcing thermoplastic. Jour nal of Thermoplastic Composite Materials. 2016, 30 (10), 1344-1360. http://dx.doi. org/10.1177/0892705716632860 | |
dc.relation.references | Hosseini, S. (2020). Natural fiber polymer nanocomposites. Fiber-Reinforced Nanocomposites: Fundamentals and Applications. 2020, 279–299. https://doi.org/10.1016/B978-0 12-819904-6.00013-X | |
dc.relation.references | Adekunle, K. (2015). Surface Treatments of Natural Fibres—A. Open Journal of Polymer Chem istry. 2015, 05 (3): 41–46. http://dx.doi.org/10.4236/ojpchem.2015.53005 | |
dc.relation.references | Balakrishnan, P; John, M; Pothen, L; Sreekala, M; Thomas, S. (2016). 12 - Natural fibre and polymer matrix composites and their applications in aerospace engineering. Advanced Compos ite Materials for Aerospace Engineering. 2016, 365–383. https://doi.org/10.1016/ B978-0-08-100037-3.00012-2 | |
dc.relation.references | Hassani, F; Merbahi, N; Oushabi, A; Elfadili, M; Kammouni, A; Oueldna, N. (2020). Effects of corona discharge treatment on surface and mechanical properties of Aloe Vera fibers. Mater Today Proc. 2020, 24, 46–51. https://doi.org/10.1016/j.matpr.2019.07.527 | |
dc.relation.references | Azad, N; Asril, M; Shah, M. (2021). A Review on Development of Natural Fibre Composites for Con struction Applications. Journal of Materials Science and Chemical Engineering. 2021, 9, 1-9. https://doi.org/10.4236/msce.2021.97001 | |
dc.relation.references | López, D; Rojas, A. (2018). Factors that influence the mechanical, physical and thermal properties of wood-plastic composite materials. Between Science and Engineering. 2018, 12 (23), 93 102. http://dx.doi.org/10.31908/19098367.3708 | |
dc.relation.references | Wahab, R; Samsi, H; Mustafa, M; Mat Razat, M; Yusof, M. (2016). Physical, mechanical and morphological studies on Bio-composite mixture of oil palm frond and Kenaf Bast Fibers. Journal of Plant Sciences. 2016, 11 (1-3), 22-30. https://dx.doi.org/10.3923/jps.2016.22.30 | |
dc.relation.references | Ramamoorthy, S; Skrifvars, M; Persson, A. (2015). A Review of Natural Fibers Used in Biocom posites: Plant, Animal and Regenerated Cellulose Fibers. Polym Rev. 2015, 55 (1) 107–162. https://doi.org/10.1080/15583724.2014.971124 | |
dc.relation.references | Ilyas, R; Sapuan, S; Ibrahim, R; Abral, H; Ishak, M; Zainudin, E; Atiqah, A; Atikah, M; Syafri, E; Asrofi, M; Jumaidin, R. (2020). Thermal, Biodegradability and Water Barrier Properties of Bio-Nanocomposites Based on Plasticised Sugar Palm Starch and Nanofibrillated Celluloses from Sugar Palm Fibres. Journal of Biobased Materials and Bioenergy. 2020, 14 (2), 234–248. https://doi.org/10.1166/jbmb.2020.1951 | |
dc.relation.references | Nurazzi, N; Asyraf, M; Khalina, A; Abdullah, N; Aisyah, H; Rafiqah, S; Sabaruddin, F; Kamarudin, S; Norrrahim, M; Ilyas, R; Sapuan, S. (2021). A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers. 2021, 13 (4), 646. https://doi.org/10.3390/polym13040646 | |
dc.relation.references | Monteiro, S; Pereira, A; Ferreira, C; Pereira, E; Ponde, R; Salgado, F. (2018). Performance of Plain Woven Jute Fabric-Reinforced Polyester Matrix Composite in Multilayered Ballistic System. Polymers. 2018, 10 (3), 230. http://doi.org/10.3390/polym10030230 | |
dc.relation.references | Sapuan, S; Purushothman, K; Sanyang, M; Mansor, M. (2018). Design and Fabrication of Kenaf Fibre Reinforced Polymer Composites for Portable Laptop Table. Lignocellulosic Composite Materials. 2018, 323–356. https://doi.org/10.1007/978-3-319-68696-7_8 | |
dc.relation.references | Rohit, K; Dixit, S. (2016). A Review - Future Aspect of Natural Fiber Reinforced Compos ite. Polymers from Renewable Resources. 2016, 7, 43-59. http://dx.doi.org/ 10.1177/204124791600700202 | |
dc.relation.references | Gupta, G; Kumar, A; Tyagi, R; Kumar, S. Application and Future of Composite Materials: A Review. IJIRSET. 2016, 5 (5): 6907-6911. DOI:10.15680/IJIRSET.2016.0505041 | |
dc.relation.references | Zin, M; Abdan, K; Norizan, M; Mazlan, N. (2018). The effects of alkali treatment on the mechanical and chemical properties of pineapple leaf fibres (PALF) and adhesion to epoxy resin. J. Sci. Tech nol. 2018, 26, 161-176. http://dx.doi.org/10.1088/1757-899X/368/1/012035 | |
dc.relation.references | Dhakal, H. (2015). Mechanical performance of PC-based biocomposites. Biocomposites - De sign and Mechanical Performance. 2015 303-317. https://doi.org/10.1016/B978-1 78242-373-7.00004-4 | |
dc.relation.references | Jariwala, H; Jain, P. (2019). A review on mechanical behavior of natural fiber reinforced polymer com posites and its applications. Journal of Reinforced Plastics and Composites. 2019, 38 (10), 441-453 https://doi.org/10.1177%2F0731684419828524 | |
dc.relation.references | Demelo, R; Marques, M; Navard, P; Duque, N. (2017). Degradation studies and mechanical proper ties of treated curauá fibers and microcrystalline cellulose in composites with polyamide 6. J. Com pos. Mater. 2017, 51 (25), 3481–3489. https://doi.org/10.1177/0021998317690446 | |
dc.rights | Derechos Reservados Universidad de La Guajira. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject.proposal | Residuos poliméricos | spa |
dc.subject.proposal | Biodegradabilidad | spa |
dc.subject.proposal | Bio-compuestos | spa |
dc.subject.proposal | Policloruro de vinilo | spa |
dc.title | Polímeros sostenibles. Una propuesta innovadora para su reciclaje en la agroindustria | spa |
dc.type | Libro | |
dc.type.coar | http://purl.org/coar/resource_type/c_2f33 | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/book | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dspace.entity.type | Publication | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | |
person.identifier.orcid | 0000-0001-6082-5651 | |
person.identifier.orcid | 0000-0002-3426-2098 | |
relation.isAuthorOfPublication | 160388cd-d0d9-4a27-a1a0-b689892d8b18 | |
relation.isAuthorOfPublication | 1cb62011-f4e2-48c5-bce6-88db843cea48 | |
relation.isAuthorOfPublication.latestForDiscovery | 160388cd-d0d9-4a27-a1a0-b689892d8b18 |