Publicación:
Calibración de modelos de suelos: Principios y aplicaciones de la modelación automática

dc.contributor.authorCastillo, Luis Manuel
dc.contributor.authorPimienta Barros, Roger David
dc.contributor.authorRedondo Mosquera, Jesús David
dc.date.accessioned2025-10-03T22:40:07Z
dc.date.available2025-10-03T22:40:07Z
dc.date.issued2023
dc.descriptionIncluye índice de tablas y figurasspa
dc.description.abstractEste trabajo se centra en la calibración de un modelo constitutivo formulado para reproducir el comportamiento de los suelos granulares ante cargas cíclicas, uti lizando para ello un enfoque de análisis bayesiano. La estrategia metodológica adoptada considera el empleo de datos experimentales derivados de ensayos triaxiales cíclicos isotrópicamente consolidados y no drenados, realizados bajo condiciones controladas de laboratorio, complementados con herramientas de modelación numérica. El propósito principal consiste en determinar los paráme tros óptimos del modelo mediante la técnica de Slice Sampling aplicada dentro del marco del análisis bayesiano, lo cual permite cuantificar la incertidumbre asociada a dicho modelo. Se decide una serie de parámetros de entre los asociados en el modelo para el proceso de calibración, para cada uno se obtiene una distribución de probabilidad aplicando de Markov. Las propiedades estadísticas fundamentales, como la media y la desviación estándar de estas distribuciones, son evaluadas en contraste con los resultados procedentes de los ensayos de laboratorio. Para ello, se recurre a la simulación de múltiples ensayos triaxiales cíclicos isotrópicos consolidados y no drenados, implementando un modelo numérico específico ajustado a un ya cimiento que reproduce las condiciones estratigráficas características del sitio de Wildlife. El modelo calibrado refleja una coincidencia destacada con los datos experimen tales observados, acompañada de un análisis detallado de la incertidumbre inhe rente al modelo formulado. Los conceptos clave vinculados a esta investigación comprenden licuefacción, incertidumbre, calibración del modelo, arena fina de Karlsruhe y el modelo constitutivo PDMY.spa
dc.description.editionPrimera edición
dc.description.notesIncluye figuras a colorspa
dc.description.tableofcontentsResumen Introducción Información general Modelos de suelo Calibración de modelos Incertidumbre Propósitos de la investigación General Específicos Descripción del suelo y ensayo triaxial Descripción del suelo Montaje experimental de Torsten Wichtmann Ensayo triaxial cíclico consolidado isotrópicamente no drenado Modelo constitutivo del suelo Esfuerzo-deformación Regla de flujo Regla de endurecimiento Inferencia Bayesiana Algoritmo de muestreo Slice Sample Calibración del modelo Descripción de los ensayos Resultados de la calibración Calibración de parámetros Análisis de resultados Análisis de las pruebas TUI10, TUI13 y TUI16 Análisis de los ensayos TCUI10, TCUI13, TCUI16 calibrando los parámetros de manera simultánea Análisis de los valores posteriores para cada parámetro Análisis de sensibilidad Verificación de los resultados Verificación de los parámetros del modelo ajustados mediante el uso de ensayos adicionales Verificación de los efectos de la variabilidad en la respuesta dinámica de un yacimiento licuable Resumen y conclusion Referenciasspa
dc.format.extent81 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.isbn978-628-7718-89-0
dc.identifier.urihttps://repositoryinst.uniguajira.edu.co/handle/uniguajira/1672
dc.language.isospa
dc.publisherUniversidad de La Guajira
dc.publisher.placeDistrito Especial, Turístico y Cultural de Riohacha
dc.relation.referencesAndrus, R. D. & Stokoe, K. H. (2000). Liquefaction Resistance of Soils from Shear-Wave Velo city. 126(11)(FEBRUARY 2000), 1015–1025. https://doi.org/10.1061/(ASCE)1090 0241(2000)126
dc.relation.referencesASTM. (2011). Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils. Norm. https://doi.org/10.1520/D7181
dc.relation.referencesSTM. (2013). D5311 - Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil. Astm D5311M-13, 92(Reapproved), 1–11. https://doi.org/10.1520/D5311
dc.relation.referencesBaecher, G. B. & Christian, J. T. (2005). Reliability and Statistics in Geotechnical Engineering. Chicester, UK: John Wiley & Sons. Boulanger, R., & Idriss, I. (2014). CpPT and SPT Based Liquefaction Triggering. (April). Boulanger, R. W., & Ziotopoulou, K. (2015). PM4Sand (Version 3): a Sand Plasticity Model for Earthquake Engineering. (March).
dc.relation.referencesCasagrande, A. (1965). The role of ‘Calculated Risk’ in Earthwork and Foundation Engineering. Journal of the Soil Mechanics and Foundations Division, 91(4), 1–40
dc.relation.referencesChen, J. L. (2010). Seismic Behaviour of Retaining Wall-Backfill Systems with Vegetation. IET Con ference Proceedings, 482-487(5). Retrieved from https://digitallibrary.theiet.org/con tent/conferences/10.1049/cp.2010.0475
dc.relation.referencesChing, J. & Chen, Y.-C. (2007). Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging. Journal of Engineering Mechanics, 133(7)816832https://doi.org/10.1061/(ASCE)0733- (2007)133:7(816)
dc.relation.referencesChing, J. & Wang, J.-S. (2016). Application of the Transitional Markov Chain Monte Carlo Algorithm to Probabilistic Site Characterization. Engineering Geology, 203, 151–167. https://doi. org/10.1016/j.enggeo.2015.10.015
dc.relation.referencesDafalias, Y. F. & Manzari, M. T. (2004). Simple Plasticity Sand Model Accounting for Fabric Change Effects. Journal of Engineering Mechanics, 130(6), 622–63
dc.relation.referencesDas, B. M. (2006). Principios de Ingeniería de Cimentaciones (5th ed.). México D.F.: Cengage Learning. Deodatis, G. (1996). Non-stationary Stochastic Vector Processes: Seismic Ground Motion Applica tions. Probabilistic Engineering Mechanics, 11(3), 149–167.
dc.relation.referencesDiyaljee, V. A. & Raymond, G. P. (1982). Repetitive Load Deformation of Cohesionless Soil. Journal of the Geotechnical Engineering Division, 108(10), 1215–1229
dc.relation.referencesElgamal, A., Yang, Z. & Parra, E. (2002). Computational Modeling of Cyclic Mobility and Post-Li quefaction Site Response. Soil Dynamics and Earthquake Engineering, 22(4), 259–271. https://doi.org/10.1016/S0267-7261(02)00022-2
dc.relation.referencesElgamal, A., Yang, Z., Parra, E. & Ragheb, A. (2003). Modeling of Cyclic Mobility in Satura ted Cohesionless Soils. International Journal of Plasticity, 19(6), 883–905. https://doi. org/10.1016/S0749-6419(02)00010-4
dc.relation.referencesFuentes, W. & Triantafyllidis, T. (2015). ISA Model: A Constitutive Model for Soils with Yield Surfa ce in the Intergranular Strain Space. International Journal for Numerical and Analytical Methods in Geomechanics, 39(11), 1235–1254. https://doi.org/10.1002/nag.2370
dc.relation.referencesGras, J. P., Sivasithamparam, N., Karstunen, M. & Dijkstra, J. (2017). Strategy for Consistent Model Parameter Calibration for Soft Soils Using Multi-Objective Optimisation. Computers and Geotechnics, 90, 164–175. https://doi.org/10.1016/j.compgeo.2017.06.006
dc.relation.referencesGroholski, D. R., Hashash, Y. M. A. & Matasovic, N. (2014). Learning of Pore Pressure Response and Dynamic Soil Behavior from Downhole Array Measurements. Soil Dynamics and Ear thquake Engineering, 61–62, 40–56. https://doi.org/10.1016/j.soildyn.2014.01.018
dc.relation.referencesGupta, H. V., Sorooshian, S. & Yapo, P. O. (1999). Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. Journal of Hydrologic Engineering, 4(2), 135–143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)
dc.relation.referencesHettler, A. (1981). Verschiebungen starrer und elastischer Gründungskörper in Sand bei monotoner und zyklischer Belastung. Institut Für Bodenmechanik Und Felsmechanik Der Universi tät Fridericiana, 90
dc.relation.referencesHolzer, T. . L. ., Youd, T. . L. . & Hanks, T. . C. . (2016). Dynamics of Liquefaction during the 1987 Superstition Hills , California , Earthquake. American Association for the Advancement of Science Stable, 244(4900), 56–59.
dc.relation.referencesINVIAS. (2013). Normas de ensayo para materiales de carreteras. Sección 100. 798. Retrieved from http://www.invias.gov.co/index.php/documentos-tecnicos-izq/139-documen to-tecnicos/1988-especificaciones-generales-de-construccion-de-carreteras-y-nor mas-de-ensayo-para-materiales-de-carretera
dc.relation.referencesIrigaray, C. (2012). Susceptibilidad a Licuefacción En La Vega De Granada (España). (January). Ismael, B. & Lombardi, D. (2019). Evaluation of Liquefaction Potential for Two Sites Due to the 2016 Kumamoto Earthquake Sequence. In N. Sundararajan, M. Eshagh, H. Saibi, M. Me
dc.relation.referencesKOKUSHO, T. (1987). In-situ Dynamic Soil Properties and Their Evaluations. Proc. 8th Asian Re gional Conference on Soil Mechanics and Foundation Engineering. Retrieved from http://ci.nii.ac.jp/naid/80003882823/en
dc.relation.referencesKondner, R. L. (1963). Hyperbolic Stress-Strain Response: Cohesive Soils. Journal of the Soil Mechanics and Foundations Division, 89(1), 115--144.
dc.relation.referencesKutter, B. L., Carey, T. J., Hashimoto, T., Zeghal, M., Abdoun, T., Kokkali, P., … Manzari, M. T. (2018). LEAP-GWU-2015 Experiment Specifications, Results, and Comparisons. 113 (May 2017), 616–628.
dc.relation.referencesManzari, M. T., Kutter, B, L., Zeghal, M., Iai, S., Tobita, T., Madabhushi, S. . P. G., … Arm strong, R. J. and others. (2014). LEAP Projects: Concept and Challenges. In Proceedings, 4th International Conference on Geotechnical Engineering for Disaster Mitigation and Rehabilitation (pp. 109--116)
dc.relation.referencesMarkov, A. A. (1906). Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot druga. Izvestiya Fiziko-Matematicheskogo Obschestva Pri Kazanskom Uni versitete, 15, 135–156.
dc.relation.referencesMASING, G. (1926). Eigenspannumyen und verfeshungung beim messing. In Proc. Inter. Congress for Applied Mechanics (pp. 332–335).
dc.relation.referencesMercado, V., El-Sekelly, W., Zeghal, M., Abdoun, T., Dobry, R. & Thevanayagam, S. (2017). Characterization of the Contractive and Pore Pressure Behavior of Saturated Sand Deposits Under Seismic Loading. Computers and Geotechnics, 82, 223–236. https://doi.org/10.1016/j. compgeo.2016.10.015
dc.relation.referencesMercado, V., Ochoa-Cornejo, F., Astroza, R., El-Sekelly, W., Abdoun, T., Pastén, C. & Her nández, F. (2019). Uncertainty Quantification and Propagation in the Modeling of Liquefiable Sands. Soil Dynamics and Earthquake Engineering, 123(February), 217–229. https:// doi.org/10.1016/j.soildyn.2019.04.016
dc.relation.referencesMeyerhof, G. G. (1974). Ultimate Bearing Capacity of Footings on Sand Layer Overlying Clay. Ca nadian Geotechnical Journal, 11(2), 223–229. https://doi.org/10.1139/t74-018
dc.relation.referencesMontgomery, J. & Boulanger, R. W. (2017). Effects of Spatial Variability on Liquefaction-Induced Settlement and Lateral Spreading. Journal of Geotechnical and Geoenvironmental En gineering, 143(1), 04016086. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001584
dc.relation.referencesMróz, Z. (1967). On the Description of Anisotropic Workhardening. Journal of the Mechanics and Physics of Solids, 15(3), 163–175. https://doi.org/10.1016/0022-5096(67)90030-0
dc.relation.referencesMróz, Z., Norris, V. A. & Zienkiewicz, O. C. (1979). Application of an Anisotropic Hardening Model in the Analysis of Elasto–Plastic Deformation of Soils. Géotechnique, 29(1), 1–34. https:// doi.org/10.1680/geot.1979.29.1.1
dc.relation.referencesNEES (Network for Earthquake Engineering Simulation). (2015). Wildlife Liquefaction Array. Retrieved September 25, 2019, from http://www.nees.ucsb.edu/facilities/wla
dc.relation.referencesNeil, R. (2003). Slice sampling (With discussion). The Annals of Statistics, 31(3), 705–767. Retrieved from http://www.jstor.org/stable/10.2307/3448413%5Cnhttp://scholar. google.com/scholar?hl=en&btnG=Search&q=intitle:Slice+sampling+(with+dis cussion)#6
dc.relation.referencesNiemunis, A. & Herle, I. (1997). Hypoplastic Model for Cohesionless Soils with Elastic Strain Range. Mechanics of Cohesive-Frictional Materials, 2(4), 279–299. https://doi.org/10.1002/ (SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8
dc.relation.referencesPatra, S. K. & Haldar, S. (2018). Response of Monopile Supported Offshore Wind Turbine in Liquefied Soil Response of Monopile Supported Offshore Wind Turbine in Liquefied Soil. (December).
dc.relation.referencesPopescu, R., Prevost, J. & Deodatis, G. (2007). 3D Effects in Seismic Liquefaction of Stochastically Variable Soil Deposits. In Risk and Variability in Geotechnical Engineering
dc.relation.referencesPrevost, J. H. & Popescu, R. (1994). An assessment of VELACS "Class A" predictions. Buffalo, NY US.: US National Center for Earthquake Engineering Research (NCEER).
dc.relation.referencesPrevost, Jean H. (1985). A Simple Plasticity Theory for Frictional Cohesionless Soils. Internatio nal Journal of Soil Dynamics and Earthquake Engineering, 4(1), 9–17. https://doi. org/10.1016/0261-7277(85)90030-0
dc.relation.referencesPuzrin, A. M. (2012). Small Strain Nonlinearity. In Constitutive Modelling in Geomechanics: Introduction (pp. 155–166). https://doi.org/10.1007/978-3-642-27395-7
dc.relation.referencesSeed, B. (1979). Soil Liquefaction and Cyclic Mobility Evalution gfor Level Ground During Earth quakes. Journal of Geotechnical and Geoenvironmental Engineering, 105.
dc.relation.referencesSivasithamparam, N., Karstunen, M. & Bonnier, P. (2015). Modelling Creep Behaviour of Ani sotropic Soft Soils. Computers and Geotechnics, 69, 46–57. https://doi.org/10.1016/j. compgeo.2015.04.015
dc.relation.referencesTaiebat, M. & Dafalias, Y. F. (2008). SANISAND: Simple Anisotropic Sand Plasticity Model. In ternational Journal for Numerical and Analytical Methods in Geomechanics, 32(8), 915–948. https://doi.org/10.1002/nag.651
dc.relation.referencesTang, C., Phoon, K.-K., Zhang, L. & Li, D.-Q. (2017). Model Uncertainty for Predicting the Bea ring Capacity of Sand Overlying Clay. International Journal of Geomechanics, 17(7), 04017015.https://doi.org/10.1061/(asce)gm.1943-5622.0000898
dc.relation.referencesWhitman, R. V. (2000). Organizing and Evaluating Uncertainty in Geotechnical Engineering. Jour nal of Geotechnical and Geoenvironmental Engineering, 126(7), 583–593. https://doi. org/10.1061/(ASCE)1090-0241(2000)126:7(583)
dc.relation.referencesWichtmann, T. & Triantafyllidis, T. (2004). Influence of a Cyclic and Dynamic Loading History on Dynamic Properties of Dry Sand, part I: Cyclic and dynamic torsional prestraining. Soil
dc.relation.referencesWichtmann, Torsten. (n.d.). Torsten wichtmann. Retrieved September 28, 2019, from Bau haus-Universität Weimar website: http://www.torsten-wichtmann.de/
dc.relation.referencesWichtmann, Torsten. (2005). Explicit Accumulation Model for Non-Cohesive Soils Under Cy clic Loading. Institut Für Grundbau Und Bodenmechanik, Phd, 274. https://doi. org/10.1.556.209
dc.relation.referencesWichtmann, Torsten & Triantafyllidis, T. (2016). An Experimental Database for the Development, Calibration and Verification of Constitutive Models for Sand with Focus to Cyclic Loading: Part II—Tests With Strain Cycles and Combined Loading. Acta Geotechnica, 11(4), 763–774. https://doi.org/10.1007/s11440-015-0412-x
dc.relation.referencesYang, Z., Elgamal, A. & Parra, E. (2003). Computational Model for Cyclic Mobility and Associa ted Shear Deformation. Journal of Geotechnical and Geoenvironmental Engineering, 129(12), 1119–1127. https://doi.org/10.1103/PhysRevB.94.045417
dc.relation.referencesYang, Z., Lu, J. & Elgamal, A. (2008). Opensees Soil Models and Solid-Fluid Fully Coupled Elements: User’s Manual, Version 1. San Diego: University of California, (October). Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:OpenSees+ Soil+Models+and+Solid-+Fluid+Fully+Coupled+Elements+User+?+s+Ma nual#0
dc.relation.referencesYoud, T. L. & Idriss, I. M. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance Of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(4), 297–313. ht tps://doi.org/10.1061/(asce)1090-0241(2001)127
dc.relation.referencesYoud, T. Leslie. & Holzer, T. L. (1994). Piezometer Performance At Wildlife. Journal of GeoEngi neering, 120(6), 975–995.
dc.relation.referencesZeghal, M, Manzari, M., Kutter, B. & Abdoun, T. (2014). LEAP: Selected Data for Class C Ca librations and Class A Validations. In Safety and Reliability: Methodology and Applica tions (p. 117).
dc.relation.referencesZeghal, Mourad, Goswami, N., Kutter, B. L., Manzari, M. T., Abdoun, T., Arduino, P., … Ziotopoulou, K. (2018). Stress-Strain Response of the LEAP-2015 Centrifuge Tests and Nu merical Predictions. Soil Dynamics and Earthquake Engineering, 113, 804–818. https:// doi.org/10.1016/j.soildyn.2017.10.014
dc.relation.referencesZhang, J., Tang, W. H., Zhang, L. M. & Huang, H. W. (2012). Characterising geotechnical model uncertainty by hybrid Markov Chain Monte Carlo simulation. Computers and Geotechnics, 43, 26–36. https://doi.org/10.1016/j.compgeo.2012.02.002
dc.rightsDerechos Reservados Universidad de La Guajira
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.proposalCalibración de módelosspa
dc.subject.proposalSuelos granularesspa
dc.subject.proposalCargas cíclicasspa
dc.titleCalibración de modelos de suelos: Principios y aplicaciones de la modelación automáticaspa
dc.typeLibro
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/book
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
person.identifier.orcid0000-0003-3866-4438
person.identifier.orcid0000-0002-7921-1673
relation.isAuthorOfPublication9ebef0cb-3288-4ab6-a976-12d1232d8299
relation.isAuthorOfPublication20288ac7-d183-45bf-a24e-e44dde395312
relation.isAuthorOfPublication.latestForDiscovery9ebef0cb-3288-4ab6-a976-12d1232d8299

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
110. Calibración de modelos de suelo.pdf
Tamaño:
18.19 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones