Publicación:
Introducción al cálculo fraccional y q-fraccional : con aplicaciones

dc.contributor.authorCastillo Pérez, Jaime
dc.date.accessioned2023-07-27T20:51:45Z
dc.date.available2023-07-27T20:51:45Z
dc.date.issued2020
dc.description.abstractEste libro contiene elementos importantes tanto del cálculo fraccional como del q-fraccional. Está diseñado para profesionales en Matemáticas, Física y ciencias de Ingenierías que deseen tener una primera aproximación a estas teorías. Su contenido está distribuido de la siguiente manera: En el primer capítulo se presentan algunos elementos de cálculo fraccional, inicialmente se hace un recorrido sobre el desarrollo histórico del mismo, desde sus inicios hacia el siglo XVII hasta la fecha. Se presentan algunas definiciones y se muestran los operadores más usuales de dicho cálculo. En el segundo capítulo se presentan las funciones más usadas en el cálculo fraccional, entre las que se cuentan a la función gamma, función gamma incompleta, función beta, función hipergeométrica generalizada, función hipergeométrica de Fox-Wright, función H, funciones de Mittag-Leffler, función de Agarwal, función de Erd`elyi, función de Robotnov-Hartley, funciónde Miller-Ross, funciones generalizadas de seno y coseno, funciones de Bessel. Se muestran algunas aplicaciones del operador derivada fraccional de Riemann-Liouville a una variedad de funciones. En el tercer capítulo se presentan los operadores de integración fraccional establecidos por varios investigadores en este campo y se muestran algunas aplicaciones. Introducción al cálculo fraccional y q-fraccional2 En el cuarto capítulo se hace una breve reseña histórica del cálculo q-fraccional, se define la q-derivada, la q-integral y varios conceptos que soportan el desarrollo de este campo de la matemática. En el quinto capítulo se presentan las funciones usadas en el cálculo q-fraccional, las cuales se establecen como análogas básicas de las funciones factorial, gamma, beta, hipergeométrica, exponencial, Bessel, H, Wright. Se introduce un nuevo teorema donde se establece la convergencia absoluta para la análoga básica de la función hipergeométrica de Fox-Wright. En el sexto capítulo se presentan los operadores q-fraccionales con sus reglas de composición y ciertas aplicaciones a las q-funcionesspa
dc.format.extent79 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.isbn9789585178199spa
dc.identifier.urihttps://repositoryinst.uniguajira.edu.co/handle/uniguajira/741
dc.language.isospaspa
dc.publisherUniversidad de La Guajiraspa
dc.publisher.placeUniversidad de La Guajiraspa
dc.relation.referencesAbel, N.H., Resolution d’un probl`eme de mecanique; Oeuvres Compl`etes, 1, 27-30 (1823).spa
dc.relation.referencesAbel, N.H., Sur quelques int´egrales d´efinies; Oeuvres Compl`etes, 1, 93-102 (1825).spa
dc.relation.referencesAgarwal, R. P., A q-analogue of MacRobert’s generalized E-function; Ganita, 11, 49-63 (1960).spa
dc.relation.referencesAgarwal, R. P., Generalized Hypergeometric Series, Asia Publishing House, Bombay, New York,USA, (1963).spa
dc.relation.referencesAgarwal, R. P., Certain fractional q-integrals and q-derivatives; Proc. Camb. Phil. Soc., 66, 365-370 (1969).spa
dc.relation.referencesAgarwal, R. P.; M. Benchohra y S. Hamani, Boundary value problems for fractional differential equations; Georgian Mathematical Journal, 16(3), 401-411 (2009).spa
dc.relation.referencesAl-Salam, W. A., q-Analogues of Cauchy’s formula; Proc. Am. Math. Soc., 17, 182-184 (1952-1953).spa
dc.relation.referencesAl-Salam, W. A., Some fractional q-integrals and q-derivatives; Proc. Edin. Math. Soc., 2(15), 135-140 (1966).spa
dc.relation.referencesAnastassiou, G. A., Fractional Differentiation Inequalities, Springer, New York, USA, (2009).spa
dc.relation.referencesAnastassiou, G. A., Advances on Fractional Inequalities, Springer, New York, USA, (2011).spa
dc.relation.referencesAndrews, G. E., A simple proof of Jacobi’s triple product identity; Proc. Amer. Math. Soc., 16, 333-334 (1965).spa
dc.relation.referencesAndrews, G. E., On basic hypergeometric series, mock theta functions, and partitions I; Quart. J. Math., 2(17), 64-80 (1966).spa
dc.relation.referencesAndrews, G. E., On basic hypergeometric series, mock theta functions, and partitions II; Quart. J. Math., 2(17), 132-143 (1966).spa
dc.relation.references] Andrews, G. E., q-identities of Auluck, Carlitz, and Rogers; Duke Math. J., 33, 575-581 (1966).spa
dc.relation.referencesAndrews, G. E., On q-difference equations for certain well-poised basic hypergeometric series; Quart. J. Math., 2(19), 433-447 (1968).spa
dc.relation.referencesAndrews, G. E., On Ramanujan’s summation of 1ψ1 (a;b;z); Proc. Amer. Math. Soc., 22, 552-553 (1969).spa
dc.relation.referencesAnnaby, M. H. y Z. S. Mansour, q-Fractional Calculus and Equations, Springer, New York, USA, (2012).spa
dc.relation.referencesBagley, R. L. y P. J. Torvik, On the fractional calculus model of viscoelastic behaviour; J. Rheol., 30(1), 133 -155 (1986).spa
dc.relation.referencesBagley, R. L., On the fractional order initial value problem and its engineering applications; In Frational Calculus and Its Applications, Koriyama, Japan, Nihon University, pp 11-20 (1990).spa
dc.relation.referencesBelarbi, S. y Z. Dahmani, On some new fractional integral inequalities; Int. Journal of Math. Analysis, 4(4), 185-191 (2010).spa
dc.relation.referencesBelavin, V. A.; R. Sh. Nigmatullin y otros dos autores, Fractional differentiation of oscillographic polarograms by means of an electrochemical two-terminal network; Trudy Kazan. Aviation. Inst., 5, 144-152 (1964).spa
dc.relation.referencesBoole, G., On a general method in analysis; Philos. Trans. Roy. Soc., 134, 225-282 (1844).spa
dc.relation.referencesBourlet, M. C., Sur les op´erations en g´en´eral et les ´equations diff´erentielles lin´eaires d’ordre infini; Annales scientifiques de l’´E.N.S., 3(14), 133-190 (1897).spa
dc.relation.referencesCaputo, M., Linear models of dissipation whose Q is almost frequency independent II; Geophis, J. R. Astr. Soc., 13, 529 - 539 (1967).spa
dc.relation.referencesCaputo, M., Elasticit´a e Dissipazione, Zanichelli Publisher, Bologna, Italy (1969).spa
dc.relation.referencesCarlitz, L., Some polynomials related to theta functions; Annali di Matematica pura ed Applicata, 4(41), 359-373 (1955).spa
dc.relation.referencesCarlitz, L., A q-analogue of a formula of Toscano; Boll. Unione Math. Ital., 12, 414-417 (1957).spa
dc.relation.referencesCarpinteri, A. y F. Mainardi (Eds.), Fractional Calculus, Some Basic Problems in Continuum and Statistical Mechanics, Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, Wien, Austria (1997).spa
dc.relation.referencesCarson, J. R., The Heaviside operational calculus; Bull. Amer. Math. Soc., 32(1), 43-68 (1926).spa
dc.relation.referencesCauchy, A. L., M´emoire sur les fonctions dont plusieurs valeurs sont li´ees entre elles par une ´equation lin´eaire, et sur diverses transformations de produits compos´es d’un nombre ind´efini de facteurs; C. R. Acad. Sci. Paris, T. XVII, p. 523, Oeuvres de Cauchy, 1re s´erie, T. VIII, Gauthier-Villars, 42-50 (1843, 1893).spa
dc.relation.referencesChoi, J.; D. Ritelli y P. Agarwal, Some new inequalities involving Generalized Erd´erlyiKober fractional q-integral operator; Appl. Math. Sci., 9(72), 3577-3591 (2015).spa
dc.relation.referencesDahmani, Z.; L. Tabharit y S. Taf, New generalisations of Gru¨ss inequality using RiemannLiouville fractional integrals; Bulletin of Math. Anal. and Applic., 2(3), 93-99 (2010).spa
dc.relation.referencesDahmani, Z. y A. Benzidane, New weighted Gru¨ss type inequalities via (α,β) fractional q-integral inequalities; International Journal of Innovation and Applied Studies, 1(1), 76-83 (2012).spa
dc.relation.referencesDalir, M. y M. Bashour, Applications of fractional calculus; Applied Mathematical Sciences, 4(21), 1021-1032 (2010).spa
dc.relation.referencesDas, S., Functional Fractional Calculus, 2 ed., Springer-Verlag Berlin Heidelberg, New York, USA (2011).spa
dc.relation.referencesDavis, H. D., The Theory of Linear Operators, Principia Press, Bloomington Indiana, USA (1936).spa
dc.relation.referencesDelgado, M. y L. Galu´e, Fractional q-integral operator involving basic hypergeometric function; Algebras Groups Geom., 25, 53-74 (2008).spa
dc.relation.referencesDiethelm, K., The Analysis of Fractional Differential Equations, Springer, New York, USA (2010).spa
dc.relation.referencesDixon, A. C., Summation of a certain series; Proc. London math. Soc., 1(35), 285-289 (1903).spa
dc.relation.referencesDougall, J., On Vandermonde’s theorem and some more general expansions; Proc. Edin. math. Soc., 25, 114-132 (1907).spa
dc.relation.referencesDragomir, S. S., A generalization of Gru¨ss inequality in inner product spaces and applications; Journal of Math. Anal. and Applic., 237(1), 74-82 (1999).spa
dc.relation.referencesDragomir, S. S., A Gru¨ss type inequality for sequences of vectores in inner product spaces and applications; Journal of Inequalities in Pure and Applied Math., 1(2), 1-11 (2000).spa
dc.relation.referencesDragomir, S. S., Some integral inequalities of Gru¨ss type; Indian Journal of Pure and Applied Mathematics, 31(4), 397-415 (2000).spa
dc.relation.referencesErd´elyi, A., Transformation of hypergeometric integrals by means of fractional integration by parts; Quart. J. Math. (Oxford), 10, 176-189 (1939).spa
dc.relation.referencesErd´elyi, A., On fractional integration and its applications to the theory of Hankel transform; Quart. J. Math. (Oxford), 11(1), 293-303 (1940).spa
dc.relation.referencesErd´elyi, A.; W. Magnus y otros dos, Tables of Integral Transforms Vol. II, McGraw-Hill, New York, USA (1954).spa
dc.relation.referencesErd´elyi, A., An integral equation involving Legendre functions; SIAM J. Appl. Math., 12, 15-30 (1964).spa
dc.relation.referencesErd´elyi, A., Axially symmetric potentials and fractional integration; J. Appl. Math., 13(1), 216-228 (1965).spa
dc.relation.referencesErnst, T., The History of q-Calculus and a new Method (Licentiate Thesis), Department of Mathematics of Uppsala University, Uppsala, Suecia (2002).spa
dc.relation.referencesEuler, L., M´emoire dans le tome V des Comment, Saint Petersberg Ann´ees, 55 (1730).spa
dc.relation.referencesGalu´e, L. y S. L. Kalla, Operadores integrales que involucran funciones cil´ındricas incompletas; Rev. T´ec. Ing. Univ. Zulia, 11(2), 111-119 (1988).spa
dc.relation.referencesGalu´e, L., Generalized Erd´erlyi-Kober fractional q-integral operator; Kuwait J. Sci. Eng., 36(2A), 21-34 (2009).spa
dc.relation.referencesGalu´e, L., Generalized Weyl fractional q-integral operator; Algebras Groups and Geometries, 26, 163-178 (2009).spa
dc.relation.referencesGalu´e, L., On composition of fractional q−integral operators involving basic hipergeometric functions; Journal of Inequalities and Special Functions, 1(1), 39-52 (2010).spa
dc.relation.referencesGalu´e, L., Unification of q-fractional integral operator; Algebras Groups and Geom., 28, 283-298 (2011).spa
dc.relation.referencesGalu´e, L., Unified fractional q-integral operator of q-special functions; Algebras Groups and Geom., 28, 185-204 (2011).spa
dc.relation.referencesGalu´e, L., Some results on a fractional q-integral operator involving generalized basic hypergeometric function; Rev. T´ec. Ing. Univ. Zulia, 35(3), 302 -310 (2012).spa
dc.relation.referencesGalu´e, L., Some results involving generalized Erd´erlyi-Kober fractional q-integral operator; Rev. Tecnociet´ıfica URU, 6, 77-89 (2014).spa
dc.relation.referencesGarg, M. y L.Chanchlani, q-Analogues of Saigo’s fractional calculus operators; Bulletin of Mathematical Analysis and Applications, 3(4), 169-179 (2011).spa
dc.relation.referencesGarg, M. y L. Chanchlani, Kober fractional q-derivative operators; Le Matematiche, 66(1), 13-26 (2011).spa
dc.relation.referencesGasper, G. y M. Rahman, Basic Hypergeometric Series, Cambridge Univ. Press, New York, USA (2004).spa
dc.relation.referencesGauchman, H., integral inequalities in q-calculus; Computers and Mathematics with Applications, 47(2-3), 281-300 (2004).spa
dc.relation.referencesGauss, C. F., Disquisitiones generales circa seriem infinitam 1+ αβ γ·1 +...; Comm. soc. reg. sci. G¨ott. rec., Vol. II. Reprinted in Werke, 3 123-162 (1813, 1876).spa
dc.relation.referencesGemant, A., A method of analyzing experimental results obtained from elastoviscous bodies; Physics, 7, 311-317 (1936).spa
dc.relation.referencesGraham, A.; G. W. Scott Blair y R. F. J. Whiters, A methodological problem in rheology; British J. Philos. Sci., 11(44), 265-278 (1961).spa
dc.relation.referencesGrenness, M. y K. B. Oldham, Semiintegral electroanalysis: theory and verification; Ana. Chem., 44, 1121-1139 (1972).spa
dc.relation.referencesGru¨nwald, A. K., Uber begrenzte derivationen und deren anwendung; Z. Angew. Math. Phys., 12, 441-480 (1867).spa
dc.relation.referencesGru¨ss, D., ¨Uber das maximum des absoluten Betrages von 1 (b−a) b a f (x)g (x)dx − 1 (b−a)2 b a f (x)dx b a g (x)dx; Math. Z. 39, 215-226 (1935).spa
dc.relation.referencesGupta, K. y A. Gupta, Study of modified ¯ H−Transform and generalized fractional integral operator of Weyl type; Int. J. Pure Appl. Sci. Technol., 7(1), 59-67 (2011).spa
dc.relation.referencesHahn, W., ¨Uber die h¨oheren Heineschen Reihen und eine einheitliche Theorie der sogenannten speziellen Funktionen; Math. Nachr., 3, 257-294 (1950).spa
dc.relation.referencesHahn, W., ¨Uber uneigentliche L¨osungen linearer geometrischer differenzengleichungen; Math. Annalen, 125, 67-81 (1952).spa
dc.relation.referencesHahn, W., Die mechanische Deutung einer geometrischen Differenzengleichung; Zeitschr. angew. Math. Mech., 33, 270-272 (1953).spa
dc.relation.referencesHardy, G. H., Notes on some points in the integral calculus; Messenger of Math., 47, 145-150 (1917).spa
dc.relation.referencesHardy, G. H. y J. E. Littlewood, Some properties of fractional integrals; Proc. London Math. Soc., 2(24), 37-41 (1925).spa
dc.relation.referencesHardy, G. H. y J. E. Littlewood, Some properties of fractional integrals I; Math. Z., 27, 565-606 (1928).spa
dc.relation.referencesHardy, G. H. y J. E. Littlewood, Some properties of fractional integrals II; Math. Z., 34, 403-439 (1932).spa
dc.relation.referencesHeaviside, O., Electrical papers, Macmillan, London, England (1892).spa
dc.relation.referencesHeaviside, O., On operators in physical mathematics; Proc. Roy. Soc., 504-529 (1893).spa
dc.relation.referencesHeaviside, O., Electromagnetic Theory, Vol. I, The electrician printing and publishing company, Ltd., London, England (1893).spa
dc.relation.referencesHeaviside, O., On operators in physical mathematics; Proc. Roy. Soc., 54, 105-143 (1894).spa
dc.relation.referencesHeaviside, O., Electromagnetic Theory, Vol. II, The electrician printing and publishing company, Ltd., London, England (1920).spa
dc.relation.referencesHeine, E., ¨Uber die Reihe 1 + [(1−qα) 1−qβ ]/[(1−q)(1−qγ)] x + [(1−qα)(1−qα+1) 1−qβ 1−qβ+1 ]/[(1−spa
dc.relation.referencesHeine, E., Untersuchungen u¨ber die Reihe 1 + [(1−qα) 1−qβ ]/[(1−q)(1−qγ)] x+ [(1−qα)(1−qα+1) 1−qβ 1−qβ+1 ]/ [(1−q)(1−q2)(1−qγ)(1−qγ+1)]}x2 + ...; J. reine angew. Math. 34, 285-328 (1847).spa
dc.relation.referencesHeine, E., Handbuch der Kugelfunctionen, Theorie und Anwendungen, vol. 1, Berlin, Germany (1878).spa
dc.relation.referencesHilfer, R., Applications of Fractional Calculus in Physics, World Scientific publishing, New Jersey, USA (2000).spa
dc.relation.referencesHiggins, T. P., The Use of Fractional Integral Operators for Solving Nonhomogeneous Differential Equations, Document DI-82-0677, Boeing Sci. Res. Lab., Washington, USA (1967).spa
dc.relation.referencesHolmgren, H. J., Om differentialkalkylen med indices of hvad nature sam helst Kongliga svenska; Vetenskaps-akademiens handlinger, 5(11), 1-83 (1864).spa
dc.relation.referencesIsogawa S., N. Kobachi y S. Hamada, A q-analogue of Riemann-Liouville fractional derivative; Res. Rep. Yatsushiro Nat. Coll. Tech., 29, 59-68 (2007).spa
dc.relation.referencesJackson, F. H., A generalization of the functions Γ(n) and xn; Proc. Roy. Soc., 74, 64-72 (1904).spa
dc.relation.referencesJackson, F. H., The application of basic numbers to Bessel’s and Legendre’s functions; Proc. Lond. Math. Soc., 32, 1–23 (1905).spa
dc.relation.referencesJackson, F. H., On q-functions and a certain difference operator; Trans. Roy. Soc. Edin., 46, 253-281 (1908).spa
dc.relation.referencesJackson, F. H., On q-definite integrals; Quart. J. Pure and Appl. Math., 41, 193-203 (1910).spa
dc.relation.referencesJackson, F. H., Basic integration; Quart. J. Math., 2(2), 1-16 (1951).spa
dc.relation.referencesKac, V. y P. Cheung, Quantum Calculus, Universitext, Springer, New York, USA (2002).spa
dc.relation.referencesKalia, R.N. (Ed), Recent Advances In Fractional Calculus, Global Publishing Company, East Lansing, USA (1993).spa
dc.relation.referencesKalla, S. L., Fractional integration operators involving generalized hypergeometric functions; Univ. Nac. Tucum´an, Rev. Matem´atica y F´ısica Te´orica, XX, 93-100 (1970).spa
dc.relation.referencesKalla, S. L. y R. Saxena, Integral operators involving hypergeometric functions II; Rev. Ser., 24, 31-36 (1974).spa
dc.relation.referencesKalla, S. L., Operators of fractional integration; Lecture Notes in Mathematics, 798, 258-280 (1980).spa
dc.relation.referencesKalla, S. L. y V. Kiryakova, An H-function generalized fractional calculus based upon composition of Erd´elyi-Kober operators in Lp; Math. Japon, 35, 1151-1171 (1990).spa
dc.relation.referencesKalla, S. L., L. Galu´e y H. M. Srivastava, Further results on an H-function generalized fractional calculus; Journal of Fractional Calculus, 4, 89-102 (1993).spa
dc.relation.referencesKalla, S. L. y L. Galu´e, Generalized fractional calculus based upon composition of some basic operators; in “Recent Advances In Fractional Calculus” Global Publishing Company, 145-178 (1993).spa
dc.relation.referencesKalla, S. L., R. K. Yadav y S. D. Purohit, On the Riemann-Liouville fractional q-integral operator involving a basic analogue of Fox H-function; Fractional Calculus & Applied Analysis, 8(3), 313-322 (2005).spa
dc.relation.referencesKalla, S. L. y Rao A., On Gru¨ss type inequality for a hypergeometric fractional integral; Le Matematiche, 66(1), 57-64 (2011).spa
dc.relation.referencesKilbas, A. A, Fractional calculus of the generalized Wright function; Fractional Calculus & Applied Analysis, 8(2), 113-126 (2005).spa
dc.relation.referencesKilbas, A. A, Fractional calculus of the generalized Wright function; Fractional Calculus & Applied Analysis, 8(2), 113-126 (2005).spa
dc.relation.referencesKilbas, A. A., H. M. Srivastava y J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Inc., New York, USA (2006)spa
dc.relation.referencesKilbas, A. A. y N. Sebastian, Fractional integration of the product of Bessel functions of the first kind; Fractional Calculus & Applied Analysis, 13(2), 159-175 (2010).spa
dc.relation.referencesKiryakova, V., Generalized Fractional Calculus and Applications, Logman Scientific and Technical, Harlow, England (1994).spa
dc.relation.referencesKober, H., On fractional integrals and derivatives; Quart. J. Math. Oxford Ser, 11, 193211 (1940).spa
dc.relation.referencesKoelink, E., Quantum groups and q-special functions, Universiteit Van Amsterdam, Report 96-10 (1996).spa
dc.relation.referencesKrug, A., Theorie der derivation; Akad. Wiss. Wien Denkenschriften Math., Naturwissen Kl., 57, 151-228 (1890).spa
dc.relation.referencesKuttner, B., Some theorems on fractional derivatives; Proc. London Math. Soc., 3(3), 480-497 (1953).spa
dc.relation.referencesLacriox, S. F., Trait´e du Calcul Diff´erentiel et du Calcul Integral, 3 ed., Courcier, Paris, France (1820).spa
dc.relation.referencesLagrange, J. L., Sur une nouvelle esp`ece de calcul relatif `a la differentiation et `a l’integration des quantit´es variables; Nouv. mem. Acad. Roy. Sci., reprinted in Oeuvres, Vol. 3 (1869), 441-476 (1772).spa
dc.relation.referencesLeibniz, G. W., Letter from Hanover, Germany,1695 to L. A. L’Hospital, Leibnizen Mathematische Schriften, Vol. 2, 301-302. First published in 1849 (1962).spa
dc.relation.referencesLeithold, L., El C´alculo con Geometr´ıa Ana´ıtica, 7 ed., Oxford University Press, Ciudad de Mexico, Mexico (1998).spa
dc.relation.referencesLiouville, J., M´emoire: sur le calcul des diff´erentielles `a indices quelconques; J. de l’ˆEcole Polytechnique, 13, 71-162 (1832).spa
dc.relation.referencesLuchko, Y. y J. J. Trujillo, Caputo type modification of the Erd´elyi-Kober fractional derivative; Frational Calculus & Applied Analysis, 10(3), 249-267 (2007).spa
dc.relation.referencesLuchko, Y., Boundary value problems for the generalized time-fractional diffusion equation of distributed order; Fractional Calculus & Applied Analysis, 12(4), 409-422 (2009)spa
dc.relation.referencesLuque, R. y L. Galu´e, Evaluation of fractional integrals involving Fox’s H-function; Rev. T´ec. Ing. Univ. Zulia, 21(1), 67-73 (1998).spa
dc.relation.referencesMagin, R. L., Fractional Calculus and Bioengineering, Begell House Publishers Inc., New York, USA (2006).spa
dc.relation.referencesMainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, Singapore, Singapore (2010).spa
dc.relation.referencesMcBride, A. y G. Roach (Eds.), Fractional Calculus, Vol. 138, Research Notes in Mathematics, Pitman, Boston–London–Melbourne (1985).spa
dc.relation.referencesMiller, K. S. y B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons Inc., New York, USA (1993)spa
dc.relation.referencesMiller, A. R. y I. S. Moskowitz, Reduction of a class of Fox-Wright psi functions for certain rational parameters; Computers & Mathematics with Applications, 30(11), 73-82 (1995).spa
dc.relation.referencesMitrinovi´c, D. S., Analytic Inequalities, Springer-Verlag, New York, USA (1970).spa
dc.relation.referencesNishimoto, K., Fractional Calculus Vol. I, Descartes Press, Koriyama, Japan (1984).spa
dc.relation.referencesNishimoto, K., Fractional Calculus Vol. II, Descartes Press, Koriyama, Japan (1987).spa
dc.relation.referencesNishimoto, K., Fractional Calculus Vol. III, Descartes Press, Koriyama, Japan (1989).spa
dc.relation.referencesNishimoto, K. (Ed), Fractional Calculus and Its Applications, Nihon University, Koriyama, Japan (1990).spa
dc.relation.referencesNishimoto, K., Fractional Calculus Vol. IV, Descartes Press, Koriyama, Japan (1991).spa
dc.relation.references¨Oˇgu¨nmez, H. y U. M. ¨Ozkan, Fractional quantum integral inequalities; J. of Inequal. and Appl., Vol. 2011, Article ID 787939, 7 pp. doi: 10.1155/2011/787939.spa
dc.relation.referencesOldham, K. B., A new approach to the solution of electrochemical problems involving difussion; Anal. Chem., 41, 1904 (1969).spa
dc.relation.referencesOldham, K. B., A unified treadment of electrolysis at an expanding mercury electrode; Anal. Chem., 41, 936 (1969).spa
dc.relation.referencesOldham, K. B. y J. Spanier, The replacement of Fick’s laws by a formulation involving semidifferentiation; J. Electroanal. Chem. Interfacial Electrochem., 26, 331-341 (1970).spa
dc.relation.referencesOldham, K. B. y J. Spanier, A general solution of the diffusion equation for semiinfinite geometries; J. Math. Anal. Appl., 39, 655-669 (1972).spa
dc.relation.referencesOldham, K. B., Diffusive transport to planar, cylindrical and speherical electrodes; J. Electroanal. Chem., 41, 351-360 (1973).spa
dc.relation.referencesOldham, K. B. y J. Spanier, The Fractional Calculus, Academic Press, New York, USA (1974).spa
dc.relation.referencesOsler, T. J., Leibniz rule for fractional derivatives generalized and application to infinite series; SIAM J. Appl. Math., 18, 658-674 (1970).spa
dc.relation.referencesOustaloup, A., La D´erivation Non Enti`ere: Th´eorie, Synth`ese et Applications, Editions Herm`es, Paris, France (1995).spa
dc.relation.referencesOwa, S., On certain generalization subclasses of analytic functions involving fractional calculus, in Frational Calculus and its Applications, Nihon University, Koriyama, Japan (1990).spa
dc.relation.referencesOzdemir, N., D. Avcı y B. B. Iskender The numerical solutions of a two-dimensional space-time Riesz-Caputo fractional diffusion equations; An International Journal of Optimization and Control: Theories & Applications, 1(1), 17-26 (2011).spa
dc.relation.referencesPhillips, P. C. y S. J. Arnold, Visualizing Multivariate selection; Evolution, 43(6), 12091222 (1989).spa
dc.relation.referencesPhillips, P. C., Time series regression with a unit root and infinite variance errors; Econometric Theory, 6, 44-62 (1990).spa
dc.relation.referencesPierantozzi, T., Estudio de las Generalizaciones Fraccionarias de las Ecuaciones Estandar de Difusi´on y de Ondas Universidad Complutense de Madrid, Departamento de Matem´atica Aplicada, Tesis doctoral, Madrid, Espan˜a (2006).spa
dc.relation.referencesPodlubny, I., Fractional Differential Equations, Academic Press, New York, USA (1999).spa
dc.relation.referencesPost, E. L., Generalized differentiation; Trans. Amer. Math. Soc., 32, 723-781 (1930).spa
dc.relation.referencesPrudnikov, A. P.,Yu. A. Brychkov y O. I. Marichev, Integrals and Series, Vol. 3, Gordon and Breach Science Publishers, New York, USA (1992).spa
dc.relation.referencesPurohit, S. D. y R. K. Yadav, On generalized fractional q-integral operators envolving the q-Gauss hypergeometric function; Bull. Math. Anal. Appl., 2(4), 35-44 (2010).spa
dc.relation.referencesPurohit, S. D. y S. L. Kalla, On fractional partial differential equations related to quantum mechanics; Journal of Physics A: Mathematical and Theoretical, 44, 1-8 (2011).spa
dc.relation.referencesPurohit, S. D., E. U¸car y R. K. Yadav, On fractional integral inequalities and their qanalogues; Rev. Tecnociet´ıfica URU, 6, 53-66 (2014).spa
dc.relation.referencesPurohit, S. D., E. U¸car y R. K. Yadav, On fractional integral inequalities and their qanalogues; Rev. Tecnociet´ıfica URU, 6, 53-66 (2014).spa
dc.relation.referencesRahimy, M., Applications of fractional differential equations; Applied Mathematical Sciences, 4(50), 2453-2461 (2010).spa
dc.relation.referencesRainville, E. D., Special functions, the MacMillan, New York, USA (1960).spa
dc.relation.referencesRajkovic, P. M. , S. D. Marinkovic y M. S. Stankovic, Fractional integrals and derivatives in q–calculus; Appl. Anal. Discrete Math., 1, 311-323 (2007).spa
dc.relation.referencesRiemann, B., Versuch einer allgemeinen Auffasung der integration und differentiation, 2 ed., The Collected Works of Bernhard Riemman (H. Weber, ed.), New york, USA (1953).spa
dc.relation.referencesRiesz, M., ‘L’int´egrale de Riemann-Liouville et le probl`eme de Cauchy; Acta Math., 81, 1-223 (1949).spa
dc.relation.referencesRitt, J. F., On a general class of linear homogeneous differential equations of infinite order with constant coefficients; Trans. Amer. Math. Soc., 18, 27-49 (1917).spa
dc.relation.referencesRogers, L. J., On a three-fold symmetry in the elements of Heine’s series; Proc. London Math. Soc., 24, 171-179 (1893).spa
dc.relation.referencesRogers, L. J., On the expansion of some infinite products; Proc. London Math. Soc., 24, 337-352 (1893).spa
dc.relation.referencesRogers, L. J., Second memoir on the expansion of certain infinite products; Proc. London Math. Soc., 318-343 (1894).spa
dc.relation.referencesRogers, L. J., Third memoir on the expansion of certain infinite products; Proc. London Math. Soc., 26, 15-32 (1895).spa
dc.relation.referencesRogers, L. J., On two theorems of combinatory analysis and some allied identities; Proc. London Math. Soc., 2(16), 315-336 (1917).spa
dc.relation.referencesRogers, L. J. y S. Ramanujan, Proof of certain identities in combinatory analysis (with a prefatory note by G. H. Hardy); Proc. Camb. Phil. Soc., 19, 211-216 (1919).spa
dc.relation.referencesRoss, B. (Ed.), Fractional Calculus and Its Applications, Proceedings of the International Conference on Fractional Calculus and Its Applications, University of New Haven, West Haven, Conn., June 1974, Springer-Verlag, New York, USA (1975).spa
dc.relation.referencesRoss, B., Fractional Calculus and its Application, Lecture Notes inMath. 457, SpringerVerlag, New York, USA (1975).spa
dc.relation.referencesRoss, B., Fractional calculus: An histotical apologia for the development of a calculus using differentiation and antidifferentiation of non integral orders; Mathematics Magazine, 50(3), 115-122 (1977).spa
dc.relation.referencesSaalschu¨tz, L., Eine Summationsformel; Zeitschr. Math. Phys., 35, 186-188 (1890).spa
dc.relation.referencesSabatier, J., O. P. Agrawal y J. A. Tenreiro, Advances in Fractional Calculus, Springer, New York, USA (2007).spa
dc.relation.referencesSaigo, M., A remark on integral operators involving the Gauss hypergeo-metric function; Math. Reports College of Gen. Education, Kyuskyu Univ., 11, 135-143 (1978).spa
dc.relation.referencesSaigo, M., On the H¨older continuity of the generalized fractional integrals and derivatives; Math. Rep. Kyushu Univ., 12(2), 55-62 (1980).spa
dc.relation.referencesSalem, A., Some applications of fractional q-calculus and fractional q-Leibniz rule; Journal of Fractional Calculus and Applications, 2(4), 1-11 (2011).spa
dc.relation.referencesSamko, S. G., A. A. Kilbas y O. I. Marichev, Integrals and Derivatives of Fractional Order and Some of Their Applications, Nauka i Tekhnika, Minsk, Bielorusia (1987).spa
dc.relation.referencesSamko, S. G., A. A. Kilbas y O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Pennsylvania, USA (1993).spa
dc.relation.referencesS´anchez, J. M., Historias de matem´aticas: g´enesis y desarrollo del c´alculo fraccional; Pensamiento Matem´atico, 1, 1-15 (2011).spa
dc.relation.referencesSaxena, R. K., On fractional integration operators; Math. Z., 96, 289-291 (1967).spa
dc.relation.referencesSaxena, R. K., G. C. Modi y S. L. Kalla, A basic analogue of Fox’s H-function; Rev. T´ec. Ing. Univ. Zulia, 6, 139-143 (1983).spa
dc.relation.referencesSaxena, R. K. y R. Kumar, Recurrence relations for the basic analogue of the H-function; J. Nat. Acad. Math. 8, 48-54 (1990).spa
dc.relation.referencesSaxena, R. K., R. K. Yadav y otros dos, Kober fractional q-integral operator of the basic analogue of the H-function; Rev. T´ec. Ing. Univ. Zulia, 28(2) 154-158 (2005).spa
dc.relation.referencesSaxena, R. K., Ravi Saxena y S. L. Kalla, Solution of space-time fractional Schrodinger equation occurring in quantum mspa
dc.relation.referencesScott Blair, G. W., B. C. Veinoglou y J. E. Caffyn, Limitations of the newtonian time scale in relation to non-equilibrium rheological states and a theory of quasi-properties; Proc. Roy. Soc., 189(1016), 69-87 (1947).spa
dc.relation.referencesScott Blair, G. W., The role of psychophysics in rheology; J. Colloid Sci., 2, 21-32 (1947).spa
dc.relation.referencesScott Blair, G. W y J. E. Caffyn, An application of the theory of quasiproperties to the treatment of anomalous stress-strain relations; Philos. Mag., 40, 80-94 (1949).spa
dc.relation.referencesScott Blair, G. W., Measurements of Mind and Matter, Dennis Dobson, London, England (1950).spa
dc.relation.referencesScott Blair, G. W., Some aspects of the search for invariants; British J. Philos. Sci., 1(3), 230-244 (1950).spa
dc.relation.referencesSears, D. B., Two identities of Bailey; J. London Math. Soc., 27, 510-511 (1952).spa
dc.relation.referencesSecer, A., S. D. Purohit y otros dos, A generalized q-Gru¨ss inequality involving the Riemann-Liouville fractional q-integrals; Journal of Applied Mathematics,Hindawi Publishin Corporation, Vol. 2014, article ID 914320, http://dx.doi.org/10.1155/2014/914320.spa
dc.relation.referencesShermergor, T. D., On the use of fractional differentiation operators for the description of elastic-after effect properties of materials; J. Appl. Mech. Tech. Phys, 7(6), 85-87 (1966).spa
dc.relation.referencesSingh, Y. y H. K. Mandia, On some Kober fractional q-integral operator of the basic analogue of the H-function; International Journal of Theoretical and Applied Physics, 1(I), 53-62 (2011).spa
dc.relation.referencesSlater, L. J., A new proof of Roger‘s transformations of infinite series; Proc. London Math. Soc., 2(53), 460-475 (1951).spa
dc.relation.referencesSlater, L. J., Integrals representing general hypergeometric transformations; Quart. J. Math., 2(3), 206-216 (1952).spa
dc.relation.referencesSlater, L. J., Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, England (1966).spa
dc.relation.referencesSomorjai, R. L. y D. M. Bishop, Integral transformation trial functions of the fractional integral class; Phys. Rev., A1, 1013-1026 (1970).spa
dc.relation.referencesSonine, N.Ya., Report on differentiation with an arbitrary index; (Ru-ssian), Proc. Second Congress of Russian Naturalists, 2, 18-21 (1870).spa
dc.relation.referencesSrivastava, H. M. y P. W. Karlsson, Multiple Gaussian Hypergeometric Series, John Wiley & Sons, New York, USA (1985).spa
dc.relation.referencesSrivastava H. M. y A. K. Agarwal, Generating functions for a class of q-polynomials; Annali di Matematica Pura ed Applicata, IV(154), 99-109 (1989).spa
dc.relation.referencesSulaiman, W. T., On some new fractional q-integral inequalities; South Asian J. of Math., 2(5), 450-459 (2012).spa
dc.relation.referencesTarasov, V. E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, USA (2011).spa
dc.relation.referencesThomae, J., Beitr¨age zur Theorie der durch die Heinesche Reihe: 1 + [(1−qα) 1−qβ ]/[(1−q)(1−qγ)] x + ... darstellbaren Functionen; J. reine angew. Math. 70, 258-281 (1869).spa
dc.relation.referencesVinagre, B. M. y C. A. Monje, Introducci´on al control fraccionario; Rev. Iberoam. de Autom´at. e Inform. Indust., 3(3), 5-23 (2006).spa
dc.relation.referencesWeber y H. Dover (Eds.), Versuch einer allgemeinen auffasung der integration und differentiation, The collected works of Bernhard Riemann, New York, USA (1953).spa
dc.relation.referencesWei, Z., W. Dong y J. Che, Periodic boundary value problems for fractional differential equations involving a Riemann Liouville fractional derivative; Nonlinear Analysis, 73, 3232-3238 (2010).spa
dc.relation.referencesWest, B. J., M. Bologna y P. Grigolini, Physics of Fractal Operators, Springer, New York, USA (2003).spa
dc.relation.referencesWeyl, H., Bemerkungen zum begriff des differentialquotienten gebrochener ordnung; Vierteljschr. Naturforsch. Gesellsch. Zu¨rich, 62, 296-302 (1917).spa
dc.relation.referencesWhipple, F. J. W., On well-poised series, generalized hypergeometric series having parameters in pairs, each pair with the same sum; Proc. London math. Soc., 2(24), 247-263 (1926).spa
dc.relation.referencesWhipple, F. J. W., Well-poised series, and other generalized hypergeometric series; Proc. London math. Soc., 2(25), 525-544 (1926).spa
dc.relation.referencesWhipple, F. J. W., Algebraic proofs of the theorems of Cayley and Orr concerning the products of certain hypergeometric series; J. London Math. Soc., 2, 85-90 (1927).spa
dc.relation.referencesWhipple, F. J. W., On a formula implied in Orr’s theorems concerning the product of hypergeometric series; J. London Math., Soc., 4, 48-50 (1929).spa
dc.relation.referencesWiener, N., The operational calculus; Math. Ann., 95, 557-584 (1926).spa
dc.relation.referencesYadav, R. K. y S. D. Purohit, Application of Riemann-Liouville fractional q-integral operator to basic hypergeometric functions; Acta Ciencia Indica, 30(iii), 593-600 (2004).spa
dc.relation.referencesYadav, R. K. y S. D. Purohit, On applications of Kober fractional q-integral operator to certain basic hypergeometric functions; J. Rajasthan Acad. Phy. Sci. 5(4), 437-448 (2006).spa
dc.relation.referencesYadav, R. K. y S. D. Purohit, On applications of Weyl fractional q-integral operator to generalized basic hypergeometric functions; Kyungpook Math. J., 46, 235-245 (2006).spa
dc.relation.referencesYadav, R. K., S. D. Purohit y S. L. Kalla, On generalized Wely fractional q-integral operator involving generalized basic hypergeometric functions; Fractional Calculus & Applied Analysis, 11(2), 129-142 (2008).spa
dc.relation.referencesYadav, R. K., S. L. Kalla y G. Kaur, On fractional q-integral operator involving the basic multiple hypergeometric functions; Algebras Groups and Geometries, 27(1), 97-116 (2010).spa
dc.relation.referencesZhu, C., W. Yang y O. Zhao, Some new fractional q-integral Gru¨ss-type inequalities and other inequalities; J. of Inequal. and Appl., Vol. 2012, article 299, 2012, DOI: 10.1186/1029-242X-2012-299.spa
dc.rightsCopyright - Universidad de La Guajira, 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.lembCálculo
dc.subject.lembFunciones
dc.subject.lembAnálisis funcional
dc.subject.lembTeoría de los operadores
dc.titleIntroducción al cálculo fraccional y q-fraccional : con aplicacionesspa
dc.typeLibrospa
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bookspa
dc.type.redcolhttps://purl.org/redcol/resource_type/LIBspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
150. Introduccion al calculo fraccional -web-.pdf
Tamaño:
1.45 MB
Formato:
Adobe Portable Document Format
Descripción:
Libro

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.48 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones