Publicación:
Contamnación atmosférica urbana e industrial: estado de la calidad de aire y contribución de fuentes de material particulado en La Guajira

dc.contributor.authorRestrepo Vásquez, Gloria
dc.contributor.authorRojano Alvarado, Roberto
dc.contributor.authorArregocés, Heli A.
dc.date.accessioned2024-10-17T22:13:15Z
dc.date.available2024-10-17T22:13:15Z
dc.date.issued2022
dc.descriptionIncluye índice de tablas y figuras
dc.description.abstractEn general, el material particulado es una preocupación, debido a sus impactos nocivos en la salud pública, su influencia en el clima y sus impactos ecológicos. Este texto científico fue diseñado para evaluar las concentraciones en la atmósfera de las partículas PM10 y PM2.5, su variabilidad temporal, la caracterización y el aporte de fuentes en una zona urbana de una ciudad capital y en una mina de carbón a cielo abierto (El Cerrejón), ubicada en el norte de Colombia. Se hizo una recopilación varios proyectos durante 2010-2020. La zona urbana mostró concentraciones medias generales de PM10 y PM2.5 en promedio diario de 37.9 μg/m3 de PM10 y 14.45 μg/m3 de PM2.5, respectivamente. En la zona industrial los resultados mostraron concentraciones medias de PM10 y PM2.5 en el periodo de 2010 a 2020 de 43.52 μg/m3 (CI95% 42- 45 μg/m3), con desviación estándar de 19.28 μg/m3 y 14.50 μg/m3(CI95% 14- 15 μg/m3), con desviación estándar de 8.43 μg/m3, respectivamente. El Nivel de PM10 de la zona urbana es mayor comparado al de la zona industrial. La caracterización de PM10 en la zona urbana mostró aportes del transporte, mineralógico y aerosoles marinos. La Caracterización y el modelo de receptor PMF mostraron cinco factores que aportan en la zona industrial. El principal factor es el polvo mineralógico originados por operaciones mineras, el segundo factor es el transporte, el tercer factor es la combustión de biomasa, el cuarto factor son los aerosoles marinos y el quinto factor aporte de aerosoles secundario. Los promedios de PM10 en las estaciones urbana e industrial no exceden el NMPCC anual (50 μg/m3), si se observan los cálculos de forma indicativa. Sin embargo, exceden el nivel del objetivo intermedio 2 (OI2) de la OMS (30 μg/m3). Este nivel es el que proyecta Colombia NMPCC para el 2030.spa
dc.description.abstractParticulate matter is a global concern, due to its harmful impacts on public health, its influence on the climate, and its ecological impacts. This scientific text was designed to evaluate the concentrations in the atmosphere of the PM10 and PM2.5 particles, the temporal variability, the characterization and the contribution of sources in an urban area of an intermediate city and in an open pit coal mine (El Cerrejón), located in north of Colombia. A compilation of the results of various investigations was perform during the years 2010-2020. The urban area showed average concentrations of PM10 and PM2.5 of 37.9 μg/m3 of PM10 and 14.45 μg/m3 of PM2.5, respectively. In the industrial zone, the results showed general mean concentrations of PM10 and PM2.5 in the period from 2010 to 2020 of 43.52 μg/m3 (CI95% 42- 45 μg/m3) with a standard deviation of 19.28 μg/m3 and 14.50 μg/m3 (CI95% 14-15 μg/m3) with standard deviation of 8.43 μg/m3, respectively. The PM10 level in the urban area is higher compared to that of the industrial area. The characterization of PM10 in the urban area showed the contribution of transport, mineralogy and marine aerosols. Characterization and the PMF receptor model showed five contributing factors in the industrial zone. The main factor is mineralogical dust originated by mining operations, the second factor is transportation, the third factor is biomass combustion, the fourth factor is marine aerosols and the fifth factor is secondary aerosol contribution. The averages of PM10 in the urban and industrial stations do not exceed the annual NMPCC (50 μg/m3), if the calculations are observed in an indicative way. However, the levels exceed the WHO intermediate objective 2 (OI2) (30 μg/m3). This level is the one that Colombia NMPCC will use for 2030.eng
dc.description.editionPrimera edición
dc.description.notesContiene tablas a blanco y negro, ilustraciones, diagramas a color y a blanco y negro y mapas a colorspa
dc.description.tableofcontentsResumen y abstract Introducción Capítulo 1 Atmósfera y sus constituyentes 1.1 Composición química 1.2 Clasificación de la atmósfera Capítulo 2 Contaminación atmosférica 2.1 Definición, cuantificación y normativa Capítulo 3 El material particulado: orígen, composición e impacto 3.1 Clasificación del material particulado 3.2 Componente químico del material particulado 3.3 Impacto del material particulado 3.3.1 Impacto sobre la salud 3.3.2 Impacto sobre la visibilidad 3.3.3 Impacto sobre los materiales 3.3.4 Impacto sobre el clima 3.4 Impacto a la calidad de aire por la minería a cielo abierto Capítulo 4 Caracterización y aporte de material particulado. 4.1 Caracterización química de material particulado PM10 4.2 Modelo de receptor para identificar aporte de fuentes Concentración de mp en la zona urbana de la ciudad de Riohacha, La Guajira 5.1 Metodología 5.2 Área de estudio 5.3 Inventario de emisiones Capítulo 6 Concentración de material particulado zona urbana Capítulo 7 Concentración de material particulado en zona industrial 7.1 Meteorología zona industrial 7.2 Niveles de concentración de MP en la zona industrial Capítulo 8 Caracterización de partículas pm10 en zona urbana Capítulo 9 Caracterización de partículas pm10 en zona de minería a cielo abierto Capítulo 10. Contribución de fuente de pm10 10.1 Aporte de PM10 en la estación las casitas (LC) 10.2 Aporte de PM10 en la estación provincial (PV) 10.3 Aporte de PM10 en la estación patilla (PT) 10.4 Aporte de PM10 en la estación barrancas (BR) Capítulo 11 Cumplimiento de las normas nacionales e internacionales Conclusiones Referenciasspa
dc.format.extent113 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.isbn978-628-7581-32-6
dc.identifier.urihttps://repositoryinst.uniguajira.edu.co/handle/uniguajira/864
dc.language.isospa
dc.publisherUniversidad de La Guajira
dc.publisher.placeDistrito Especial, Turístico y Cultural de Riohacha
dc.relation.referencesAlbuquerque, M., Coutinho, M., Rodrigues, J., Ginja, J., & Borrego, C. (2017). Long-term monitoring of trace metals in PM10 and total gaseous mercury in the atmosphere of Porto, Portugal. Atmospheric Pollution Research, 8(3), 535–544. https://doi. org/10.1016/j.apr.2016.12.001
dc.relation.referencesAmponsah-Dacosta, F. (1997). Cost Effective Strategies for Dust Control in an Opencast Coal Mine [University of Witwatersrand]. http://hdl.handle.net/10539/17087
dc.relation.referencesAndreae, M. O., & Gelencsér, a. (2006). Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmospheric Chemistry and Physics Discussions, 6(3), 3419–3463. https://doi.org/10.5194/acpd-6-3419-2006
dc.relation.referencesAutrup, H. (2010). Ambient Air Pollution and Adverse Health Effects. Procedia - Social and Behavioral Sciences, 2(5), 7333–7338. https://doi.org/10.1016/j.sbspro.2010.05.089
dc.relation.referencesBabu, S. S., Kompalli, S. K., & Moorthy, K. K. (2016). Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts. Science of The Total Environment, 563–564, 351–365. https://doi.org/10.1016/j. scitotenv.2016.03.246
dc.relation.referencesBanerjee, T., Murari, V., Kumar, M., & Raju, M. P. (2015). Source Apportionment of Airborne Particulates through Receptor Modelling: Indian Scenario. Atmospheric Research, 164–165(February 2016), 167–187. https://doi.org/10.1016/j.atmosres.2015.04.017
dc.relation.referencesBert Brunekreef, S. T. H. (2002). Air pollution and health. The Lancet, 360(7002), 1233– 1242. https://doi.org/10.1016/s0140-6736(02)11274-8
dc.relation.referencesBolaño-Truyol, J., Schneider, I. L., Cuadro, H. C., Bolaño-Truyol, J. D., & Oliveira, M. L. S. (2021). Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean. In Geoscience Frontiers. https://doi.org/10.1016/j. gsf.2021.101152
dc.relation.referencesCalvo, A. I., Alves, C., Castro, A., Pont, V., Vicente, A. M., & Fraile, R. (2013). Research on aerosol sources and chemical composition: Past, current and emerging issues. Atmospheric Research, 120–121, 1–28. https://doi.org/10.1016/j.atmosres.2012.09.021
dc.relation.referencesCheng, Z., Jiang, J., Farjardo, O., Wang, S., & Hao, J. (2013). Characteristics and health impacts of particulate matter pollution in China (2001-2011). Atmospheric Environment, 65, 186 – 194.
dc.relation.referencesChow, J C, & Watson, J. G. (1992). Fugitive emissions add to air pollution. Environmental Protection, 3, 26–31.
dc.relation.referencesChow, Judith C., Watson, J. G., Crow, D., Lowenthal, D. H., & Merrifield, T. (2001). Comparison of IMPROVE and NIOSH Carbon Measurements. Aerosol Science and Technology, 34(1), 23–34. https://doi.org/10.1080/027868201300081923
dc.relation.referencesCMRI. (1999). Annual environmental monitoring report for Lakhanpur Area.
dc.relation.referencesCorpoguajira. (2020). Informe Trimestral de Calidad de Aire en La Guajira: Primer trimestre 2020. In Journal of Chemical Information and Modeling.
dc.relation.referencesCsavina, J., Field, J., F??lix, O., Corral-Avitia, A. Y., S??ez, A. E., & Betterton, E. A. (2014). Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates. Science of the Total Environment, 487(1), 82–90. https://doi. org/10.1016/j.scitotenv.2014.03.138
dc.relation.referencesDANE. (2019). Resultados Censo Nacional de Población y Vivienda 2018 - Medellin, Antioquia. https://www.dane.gov.co/files/censo2018/informacion-tecnica/presentacionesterritorio/ 190816-CNPV-presentacion-La-Guajira-Riohacha.pdf
dc.relation.referencesDNP. (2018). POLÍTICA PARA EL MEJORAMIENTO DE LA CALIDAD DEL AIRE. In Consejo Nacional de Politica Economica y Social - Republica de Colombia (pp. 1–86). DNP. https://colaboracion.dnp.gov.co/CDT/CONPES/Económicos/3943.pdf
dc.relation.referencesDockery DW, Pope CA 3rd, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG Jr, S. F. (1993). an association between air pollution and mortality in six u.s. cities. The New England Journal of Medicine, 329(24).
dc.relation.referencesEggersdorfer, M. L., & Pratsinis, S. E. (2014). Agglomerates and aggregates of nanoparticles made in the gas phase. Advanced Powder Technology, 25(1), 71–90. https://doi.org/10.1016/j.apt.2013.10.010
dc.relation.referencesEPA. (1995). Compilation of Air Pollutant Emission Factors. Volume I: Stationary Point and Area Sources. AP 42, Fifth Edition Compilation of Air Pollutant Emission Factors, Volume I Chapter 11: Mineral Products Industry: Western Surface Coal Mining. In Western Surface Coal Mining (Issue 1). https://doi.org/8138-F-0101,D
dc.relation.referencesEPA. (2015). Criteria Air Pollutants. National Ambient Air Quality Standards (NAAQS). https://www.epa.gov/criteria-air-pollutants
dc.relation.referencesEPA. (2021). Initial List of Hazardous Air Pollutants with Modifications. Hazardous Air Pollutants. https://www.epa.gov/haps/initial-list-hazardous-air-pollutantsmodifications
dc.relation.referencesFang, G.-C., Wu, Y.-S., Chang, S.-Y., Rau, J.-Y., Huang, S.-H., & Lin, C.-K. (2006). Characteristic study of ionic species in nano, ultrafine, fine and coarse particle size mode at a traffic sampling site. Toxicology and Industrial Health, 22(1), 27–37.
dc.relation.referencesFitzgerald, J. W. (1991). Marine aerosols: A review. Atmospheric Environment. Part A. General Topics, 25(3–4), 533–545. https://doi.org/http://dx.doi.org/10.1016/0960- 1686(91)90050-H
dc.relation.referencesFranklin, B. A., Brook, R., & Arden Pope, C. (2015). Air pollution and cardiovascular disease. Current Problems in Cardiology, 40(5), 207–238. https://doi.org/10.1016/j. cpcardiol.2015.01.003
dc.relation.referencesFriedlander, S. K. (1971). The characterization of aerosols distributed with respect to size and chemical composition—II. Classification and design of aerosol measuring devices. Journal of Aerosol Science, 2(3), 331–340. https://doi.org/http://dx.doi. org/10.1016/0021-8502(71)90058-9
dc.relation.referencesGargava, P., & Rajagopalan, V. (2015). Source prioritization for urban particulate emission control in India based on an inventory of PM10 and its carbonaceous fraction in six cities. Environmental Development, 16, 44–53. https://doi.org/10.1016/j. envdev.2015.07.009
dc.relation.referencesGerald R. North, Pyle, J., & Zhang, F. (Eds.). (2015). Encyclopedia of Atmospheric Sciences (2nd Editio). Academic Press.
dc.relation.referencesGianini, M. F. D., Gehrig, R., Fischer, A., Ulrich, A., Wichser, A., & Hueglin, C. (2012). Chemical composition of PM10 in Switzerland: An analysis for 2008/2009 and changes since 1998/1999. Atmospheric Environment, 54, 97–106. https://doi.org/10.1016/j. atmosenv.2012.02.037
dc.relation.referencesGodec, R., Jakovljević, I., Šega, K., Čačković, M., Bešlić, I., Davila, S., & Pehnec, G. (2016). Carbon species in PM10 particle fraction at different monitoring sites. Environmental Pollution. https://doi.org/http://dx.doi.org/10.1016/j.envpol.2016.06.034
dc.relation.referencesGuarnieri, M., & Balmes, J. R. (2014). Outdoor air pollution and asthma. The Lancet, 383(9928), 1581–1592. https://doi.org/10.1016/S0140-6736(14)60617-6
dc.relation.referencesHamilton, R. S., Revitt, D. M., Vincent, K. J., & Butlin, R. N. (1995). Sulphur and nitrogen particulate pollutant deposition on to building surfaces. Science of the Total Environment, 167, 57–66. https://doi.org/10.1016/0048-9697(95)04569-M
dc.relation.referencesHaywood, J., & Boucher, O. (2000). Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of Geophysics, 38(4), 513–543. https:// doi.org/10.1029/1999RG000078
dc.relation.referencesHendryx, M., & Zullig, K. J. (2009). Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions. Preventive Medicine, 49(5), 355–359. https://doi.org/10.1016/j.ypmed.2009.09.011
dc.relation.referencesHopke, P. K. (2016a). A Review of Receptor Modeling Methods for Source Apportionment. Journal of the Air & Waste Management Association, 2247(January), 10962247.2016.1140693. https://doi.org/10.1080/10962247.2016.1140693
dc.relation.referencesHouck, J. E. (1991). Chapter 3 Source Sampling for Receptor Modeling. In Data Handling in Science and Technology (7th ed., Vol. 7, Issue C, pp. 45–82). Elsevier B.V. https://doi. org/10.1016/S0922-3487(08)70126-6
dc.relation.referencesHuertas, J. I., Huertas, M. E., & Solís, D. A. (2012). Characterization of airborne particles in an open pit mining region. Science of the Total Environment, 423, 39–46. https://doi. org/10.1016/j.scitotenv.2012.01.065
dc.relation.referencesIDEAM. (2019). Informe del estado de la Calidad del Aire en Colombia 2018. In Comité de Comunicaciones y Publicaciones del IDEAM (p. 305). http://www.uasf.edu.pe/ includes/archivos_pre/20112/1035_370101_20112_SEPARATA_Calidad_de_Aire. doc
dc.relation.referencesIPCC. (2006). Guidelines for National Greenhouse Gas Inventories (T. I. P. on C. Change (Ed.)).
dc.relation.referencesIPCC. (2013). Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Stocker, T.F., D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. X. V. Bex, & P. M. Midgley (Eds.); Vol. 9781107057). Cambridge University Press. https://doi.org/10.1017/ CBO9781107415324.018
dc.relation.referencesJain, R. K., Cui, Z. “Cindy,” & Domen, J. K. (2016). Chapter 4 - Environmental Impacts of Mining. In R. K. J. “Cindy” C. K. Domen (Ed.), Environmental Impact of Mining and Mineral Processing (pp. 53–157). Butterworth-Heinemann. https://doi.org/http:// dx.doi.org/10.1016/B978-0-12-804040-9.00004-8
dc.relation.referencesKabatas, B., Unal, A., Pierce, R. B., Kindap, T., & Pozzoli, L. (2014). The contribution of Saharan dust in PM10 concentration levels in Anatolian Peninsula of Turkey. Science of the Total Environment, 488–489(1), 413–421. https://doi.org/10.1016/j. scitotenv.2013.12.045
dc.relation.referencesKhan, A. J., Li, J., & Husain, L. (2006). Atmospheric transport of elemental carbon. Journal of Geophysical Research, 111(D4), D04303. https://doi.org/10.1029/2005jd006505
dc.relation.referencesKlika, Z., & Martinec, P. (2012). Coal Fires and Coal-Waste Piles in the Czech Republic. In G. Stracher, A. Prakash, & Llina Sokol; (Eds.), Coal and Peat Fires: A Global Perspective (S, Vol. 2, pp. 79–114). Elsevier B.V. https://doi.org/10.1016/B978-0-444-59412- 9.00006-5
dc.relation.referencesKondo, Y., Miyazaki, Y., Takegawa, N., Miyakawa, T., Weber, R. J., Jimenez, J. L., Zhang, Q., & Worsnop, D. R. (2007). Oxygenated and water-soluble organic aerosols in Tokyo. Journal of Geophysical Research Atmospheres, 112(1), 1–11. https://doi. org/10.1029/2006JD007056
dc.relation.referencesKozlov, V. S., Shmargunov, V. P., Panchenko, M. V., Chernov, D. G., Kozlov, A. S., & Malyshkin, S. B. (2016). Seasonal Variability of the Black Carbon Size Distribution in the Atmospheric Aerosol. Russian Physics Journal, 58(12), 1804–1810. https://doi. org/10.1007/s11182-016-0720-0
dc.relation.referencesLandrigan, P. J., Fuller, R., Acosta, N. J. R., Adeyi, O., Arnold, R., Bibi Baldé, A., Bertollini, R., & Bose-O’Reilly, S. (2017). Comisión Lancet sobre contaminación y salud. Lancet, 4. http://dx.doi.org/10.1016/
dc.relation.referencesLiu, P. F., Zhao, C. S., Göbel, T., Hallbauer, E., Nowak, A., Ran, L., Xu, W. Y., Deng, Z. Z., Ma, N., Mildenberger, K., Henning, S., Stratmann, F., & Wiedensohler, A. (2011). Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the north China plain. Atmospheric Chemistry and Physics, 11(7), 3479–3494. https://doi.org/10.5194/acp-11-3479-2011
dc.relation.referencesDecreto 948 De 1995, Pub. L. No. 948, 1 (1995). http://www.alcaldiabogota.gov.co/ sisjur/normas/Norma1.jsp?i=1479
dc.relation.referencesMADS. (2006). Resolución número 601 Por el cual se establecen Niveles Máximos Permicibles de Calidad de Aire. Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 601, 1–13.
dc.relation.referencesMADS. (2013). Programa de reducción de la contaminación del aire para las áreas fuente de la zona carbonífera del Cesar.
dc.relation.referencesMADS. (2017). Documento Técnico de Soporte Resolusión 2254 de 2017 (Issue 8, pp. 1–94). MADS.
dc.relation.referencesManuel Rincón-Riveros, J., Alejandra Rincón-Caro, M., Sullivan, A. P., Felipe Mendez- Espinosa, J., Carlos Belalcazar, L., Quirama Aguilar, M., & Morales Betancourt, R. (2020). Long-term brown carbon and smoke tracer observations in Bogotá, Colombia: Association with medium-range transport of biomass burning plumes. Atmospheric Chemistry and Physics, 20(12), 7459–7472. https://doi.org/10.5194/acp-20-7459-2020
dc.relation.referencesMcinnes, L. M., Quinn, P. K., Covert, D. S., & Anderson, T. L. (1996). Gravimetric analysis, ionic composition, and associated water mass of the marine aerosol. Atmospheric Environment, 30(6), 869–884. https://doi.org/https://doi.org/10.1016/1352- 2310(95)00354-1
dc.relation.referencesMegido, L., Su, B., Mara, E., & Fern, Y. (2016). Chemosphere Relationship between physicochemical characteristics and potential toxicity of PM10. 162, 73–79. https://doi. org/10.1016/j.chemosphere.2016.07.067
dc.relation.referencesMelody, S. M., & Johnston, F. H. (2015). Coal mine fires and human health: What do we know? International Journal of Coal Geology, 152, 1–14. https://doi.org/10.1016/j. coal.2015.11.001
dc.relation.referencesMeszaros, E. (1999). Fundamentals of Atmospheric Aerosol Chemistry. In the University of California. Akademiai Kiado. https://doi.org/10.1023/A:1010753724116
dc.relation.referencesMoller, D. (1990). The Na/CL ratio in rainwater and the seasalt chloride cycle. Tellus, 42B, 254–262. https://doi.org/10.1034/j.1600-0889.1990.t01-1-00004.x
dc.relation.referencesMorillas, H., Maguregui, M., García-Florentino, C., Marcaida, I., & Madariaga, J. M. (2016b). Study of particulate matter from Primary/Secondary Marine Aerosol and anthropogenic sources collected by a self-made passive sampler for the evaluation of the dry deposition impact on built heritage. Science of The Total Environment, 550, 285–296. https://doi.org/10.1016/j.scitotenv.2016.01.080
dc.relation.referencesNie, W., Wang, T., Wang, W., Wei, X., & Liu, Q. (2013). Atmospheric concentrations of particulate sulfate and nitrate in Hong Kong during 1995-2008: Impact of local emission and super-regional transport. Atmospheric Environment, 76(x), 43–51. https://doi.org/10.1016/j.atmosenv.2012.07.001
dc.relation.referencesPabón-Caicedo, J. D., & Eslava-Ramírez, J. A. (2001). Generalidades de la Distribución Espacial y Temporal de la Temperatura del Aire y de la Precipitación en Colombia. Meteorología Colombiana, 4, 47–59.
dc.relation.referencesPark, S. S., Kim, Y. J., & Fung, K. (2001). Characteristics of PM2.5 carbonaceous aerosol in the Sihwa industrial area, Korea. Atmospheric Environment, 35(4), 657–665. https:// doi.org/10.1016/S1352-2310(00)00357-5
dc.relation.referencesPetzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S. M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., & Zhang, X. Y. (2013). Recommendations for reporting black carbon measurements. Atmospheric Chemistry and Physics, 13(16), 8365–8379. https://doi.org/10.5194/acp-13-8365-2013
dc.relation.referencesPope, A. C., & Dockery, D. W. (1999). Epidemiology of Particle Effects. In Air Pollution and Health. https://doi.org/10.1016/B978-012352335-8/50106-X
dc.relation.referencesPope, C A, Verrier, R. L., Lovett, E. G., Larson, A. C., Raizenne, M. E., & Kanner, R. E. (1999). Heart rate variability associated with particulate air pollution. American Heart Journal, 138(5), 11–15. https://doi.org/10.1016/S0002-8703(99)70014-1
dc.relation.referencesPope, C Arden, Ezzati, M., & Dockery, D. W. (2009). Fine-particulate air pollution and life expectancy in the United States. The New England Journal of Medicine, 360(4), 376– 386. https://doi.org/10.1056/NEJMsa0805646
dc.relation.referencesQuan, J., Zhang, Q., He, H., Liu, J., Huang, M., & Jin, H. (2011). Analysis of the formation of fog and haze in North China Plain (NCP). Atmospheric Chemistry and Physics, 11(15), 8205–8214. https://doi.org/10.5194/acp-11-8205-2011
dc.relation.referencesQuerol, X., Alastuey, H., Rodriguez, S., Mantilla, E., & Ruiz, C. R. (2001). Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources. Atmospheric Environment, 35(5), 845–858.
dc.relation.referencesRamanathan, V., & Carmichael, G. (2008). Global and Regional Climate Changes Due to Black Carbon. Nature Geoscience, 1, 221. https://doi.org/10.1038/ngeo156
dc.relation.referencesResolucion 2254. Por el cual se establecen Niveles Máximos Permisibles de Calidad de Aire, Pub. L. No. 2254 de 2017, 1 (2017).
dc.relation.referencesRojano, R., Arregoces, H., & Restrepo, G. (2014b). Elemental composition and sources of inhalable particles (PM10) and Suspended Total Particles (TSP) in the Urban Area of the City of Riohacha, Colombia | Composición elemental y fuentes de origen de partículas respirables (PM10) y Partículas Suspendidas T. Informacion Tecnologica, 25(6). https://doi.org/10.4067/S0718-07642014000600002Resolusión 2254 de 1 noviembre de 2017, 1 (2017).
dc.relation.referencesRojano, Roberto, Arregoces, H., & Restrepo, G. (2014). Composición elemental y fuentes de origen de Partículas Respirables (PM10) y Partículas Suspendidas Totales (PST) en el área Urbana de la Ciudad de Riohacha, Colombia. Informacion Tecnologica, 25(6), 3–12. https://doi.org/10.4067/S0718-07642014000600002
dc.relation.referencesRojano, Roberto, Pérez, J., & Deluque, J. (2011). Análisis comparativo de las mediciones de material particulado PM10. Revista Facultad de Ingeniería Universidad de Antioquia, 4, 27–35.
dc.relation.referencesRuffolo, S. A., Comite, V., La Russa, M. F., Belfiore, C. M., Barca, D., Bonazza, A., Crisci, G. M., Pezzino, A., & Sabbioni, C. (2015). An analysis of the black crusts from the Seville Cathedral: A challenge to deepen the understanding of the relationships among microstructure, microchemical features and pollution sources. Science of the Total Environment, 502, 157–166. https://doi.org/10.1016/j.scitotenv.2014.09.023
dc.relation.referencesSaarikoski, S., Timonen, H., Saarnio, K., Aurela, M., Järvi, L., Keronen, P., Kerminen, V.-M., & Hillamo, R. (2008). Sources of organic carbon in fine particulate matter in northern European urban air. Atmospheric Chemistry and Physics, 8(20), 6281–6295. https://doi.org/10.5194/acp-8-6281-2008
dc.relation.referencesSamara, C, Kouimtzis, T., Tsitouridou, R., Kanias, G., & Simeonov, V. (2003). Chemical mass balance source apportionment of PM sub(10) in an industrialized urban area of Northern Greece. Atmospheric Environment, 37(1), 41–54. https://doi.org/http:// dx.doi.org/10.1016/S1352-2310(02)00772-0
dc.relation.referencesSánchez-Triana, E., Ahmed, K., & Awe, Y. (2007). Prioridades ambientales para la reducción de la pobreza en Colombia. Un análisis ambiental del país para Colombia (T. I. B. for R. and D. W. Bank (Ed.); Banco Mund). The International Bank for Reconstruction and Development/The World Bank. http://www-wds.worldbank.org/external/ default/WDSContentServer/WDSP/IB/2007/02/16/000310607_20070216155513/ Rendered/PDF/386100SPANISH0101OFFICIAL0USE0ONLY1.pdf
dc.relation.referencesSchwarz, J., Cusack, M., Karban, J., Chalupníčková, E., Havránek, V., Smolík, J., & Ždímal, V. (2016). PM2.5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis. Atmospheric Research, 176– 177, 108–120. https://doi.org/10.1016/j.atmosres.2016.02.017
dc.relation.referencesSharma, S. K., Mandal, T. K., Saxena, M., Rashmi, Rohtash, Sharma, A., & Gautam, R. (2014). Source apportionment of {PM10} by using positive matrix factorization at an urban site of Delhi, India. Urban Climate, 10, Part 4, 656–670. https://doi.org/http:// dx.doi.org/10.1016/j.uclim.2013.11.002
dc.relation.referencesShi, L., Zanobetti, A., Kloog, I., Coull, B. a, Koutrakis, P., Melly, S. J., & Schwartz, J. D. (2016). Low-Concentration PM and Mortality: Estimating Acute and Chronic Effects in a Population-Based Study. Environmental Health Perspectives, 124(1), 46–52. https:// doi.org/10.1289/ehp.1409111
dc.relation.referencesSokolik, I. N., & Toon, O. B. (1996). Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 381(6584), 681–683. http://dx.doi.org/10.1038/381681a0
dc.relation.referencesSorribas, M., Gómez Martín, J. C., Hay, T. D., Mahajan, A. S., Cuevas, C. A., Agama Reyes, M. V., Paredes Mora, F., Gil-Ojeda, M., & Saiz-Lopez, A. (2015). On the concentration and size distribution of sub-micron aerosol in the Galápagos Islands. Atmospheric Environment, 123, 39–48. https://doi.org/10.1016/j.atmosenv.2015.10.028
dc.relation.referencesSun, Z., An, X., Tao, Y., & Hou, Q. (2013). Assessment of population exposure to PM10 for respiratory disease in Lanzhou (China) and its health-related economic costs based on GIS. BMC Public Health, 13(1), 891. https://doi.org/10.1186/1471-2458-13-891
dc.relation.referencesTaiwo, A. M., Harrison, R. M., & Shi, Z. (2014). A review of receptor modelling of industrially emitted particulate matter. Atmospheric Environment, 97, 109–120. https://doi.org/10.1016/j.atmosenv.2014.07.051
dc.relation.referencesTrasande, L., & Thurston, G. D. (2005). The role of air pollution in asthma and other pediatric morbidities. Journal of Allergy and Clinical Immunology, 115(4), 689–699. https://doi.org/10.1016/j.jaci.2005.01.056
dc.relation.referencesTzivian, L., Winkler, A., Dlugaj, M., Schikowski, T., Vossoughi, M., Fuks, K., Weinmayr, G., & Hoffmann, B. (2015). Effect of long-term outdoor air pollution and noise on cognitive and psychological functions in adults. International Journal of Hygiene and Environmental Health, 218(1), 1–11. https://doi.org/10.1016/j.ijheh.2014.08.002
dc.relation.referencesUS EPA. (2012). Report to Congress on Black Carbon (Issue March). https://doi. org/10.1016/j.icrp.2009.12.007
dc.relation.referencesUSEPA. (2007). Air emissions. Energy and the Environment. https://www.epa.gov/ energy/learn-about-energy-and-environment#clean_energy
dc.relation.referencesUSEPA. (2012). Chapter 4: Emissions of Black Carbon. Report to Congress.
dc.relation.referencesVengoechea, A. (2019). Aporte y composición química de aerosoles marinos en las partículas PM10 en exteriores e interiores de Riohacha-La Guajira, Colombia. Universidad de La Guajira
dc.relation.referencesVijay, R., & Singh, K. (2013). Spontaneous heating and fire in coal mines. Procedia Engineering, 62, 78–90. https://doi.org/10.1016/j.proeng.2013.08.046
dc.relation.referencesWallace, J. M., & Hobbs, P. V. (2000). Atmospheric science, an introductory survey. In H. T. R. RENATA DMOWSKA, DENNIS HARTMANN (Ed.), International Geophysics Series (Second Edi, Vol. 7). Elsevier.
dc.relation.referencesWarneck, P. (1999). Chemistry of the Natural Atmosphere (P. Warneck (Ed.)). Academic Press.
dc.relation.referencesWatson, J., & Chow, J. (2015). Chapter 20 - Receptor Models and Measurements for Identifying and Quantifying Air Pollution Sources. In B. L. Murphy & R. D. Morrison (Eds.), Introduction to Environmental Forensics (Third Edition) (Third Edit, pp. 677–706). Academic Press. https://doi.org/http://dx.doi.org/10.1016/B978-0-12-404696- 2.00020-5
dc.relation.referencesWatson, John G. (2004). Protocol for Applying and Validating the CMB Model for PM 2.5 and VOC (p. 173). US. Environmental Protection Agency. http://www.epa.gov/ scram001/models/receptor/CMB_Protocol.pdf
dc.relation.referencesWatson, John G., & Chow, J. C. (2015). Receptor models and measurements for identifying and quantifying air pollution sources. In Academic Press (Ed.), Introduction to Environmental Forensics (3rd ed., Issue 3, pp. 677–706). Elsevier Ltd. https://doi. org/10.1016/B978-0-12-404696-2.00020-5
dc.relation.referencesWatson, John G., Chow, J. C., & Pace, T. G. (2000). Fugitive dust emissions. In W. T. Davis (Ed.), Air Pollution Engineering Manual (pp. 117–135). John Wiley & Sons.
dc.relation.referencesWatson, John G., Rogers, C. F., & Chow, J. C. (1995). PM 10 and PM 2.5 variations in time and space (Desert Research Institute (Ed.)).
dc.relation.referencesWHO. (2005). Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre. In OMS (Ed.), OMS (Vol. 5, Issue 1). https://apps.who.int/iris/bitstream/handle/10665/69478/WHO_SDE_PHE_ OEH_06.02_spa.pdf;jsessionid=970454FA25DFB60943EBC3409FF7E87B?sequence=1
dc.relation.referencesWinchester, J. W., & Nifong, G. D. (1971). Water pollution in Lake Michigan by trace elements from pollution aerosol fallout. Water, Air, and Soil Pollution, 1(1), 50–64. https://doi.org/10.1007/BF00280779
dc.relation.referencesWoodcock, A. H. (1972). Smaller salt particles in oceanic air and bubble behavior in the sea. JOURNAL OF GEOPHYSICAL RESEARCH, 77(27), 5316–5321. https://doi.org/ DOI: 10.1029/JC077i027p05316
dc.relation.referencesWu, Z., Hu, M., Shao, K., & Slanina, J. (2009). Acidic gases, NH3 and secondary inorganic ions in PM10 during summertime in Beijing, China and their relation to air mass history. Chemosphere, 76(8), 1028–1035. https://doi.org/10.1016/j.chemosphere.2009.04.066
dc.relation.referencesXu, J. S., He, J., Behera, S. N., Xu, H. H., Ji, D. S., Wang, C. J., Yu, H., Xiao, H., Jiang, Y. J., Qi, B., & Du, R. G. (2017). Temporal and spatial variation in major ion chemistry and source identification of secondary inorganic aerosols in Northern Zhejiang Province, China. Chemosphere, 179(December 2014), 316–330. https://doi.org/10.1016/j. chemosphere.2017.03.119
dc.relation.referencesYttri, K. E., Aas, W., Bjerke, A., Cape, J. N., Cavalli, F., Ceburnis, D., Dye, C., Emblico, L., Facchini, M. C., Forster, C., Hanssen, J. E., Hansson, H. C., Jennings, S. G., Maenhaut, W., Putaud, J. P., & Tørseth, K. (2007). Elemental and organic carbon in PM10: a one year measurement campaign within the European Monitoring and Evaluation Programme EMEP. Atmospheric Chemistry and Physics, 7(22), 5711–5725. https://doi. org/10.5194/acp-7-5711-2007
dc.relation.referencesZhang, J., Tong, L., Huang, Z., Zhang, H., He, M., Dai, X., Zheng, J., & Xiao, H. (2018). Seasonal variation and size distributions of water-soluble inorganic ions and carbonaceous aerosols at a coastal site in Ningbo, China. Science of the Total Environment, 639, 793–803. https://doi.org/10.1016/j.scitotenv.2018.05.183
dc.relation.referencesZhou, H., He, J., Zhao, B., Zhang, L., Fan, Q., Lü, C., Dudagula, Liu, T., & Yuan, Y. (2016). The distribution of PM10 and PM2.5 carbonaceous aerosol in Baotou, China. Atmospheric Research, 178–179, 102–113. https://doi.org/10.1016/j.atmosres.2016.03.019
dc.relation.referencesZijlema, W. L., Wolf, K., Emeny, R., Ladwig, K. H., Peters, A., Kongsgård, H., Hveem, K., Kvaløy, K., Yli-Tuomi, T., Partonen, T., Lanki, T., Eeftens, M., de Hoogh, K., Brunekreef, B., Stolk, R. P., & Rosmalen, J. G. M. (2016). The association of air pollution and depressed mood in 70,928 individuals from four European cohorts. International Journal of Hygiene and Environmental Health, 219(2), 212–219. https://doi. org/10.1016/j.ijheh.2015.11.006
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.proposalPM10spa
dc.subject.proposalPM2.5spa
dc.subject.proposalUrbanaspa
dc.subject.proposalIndustrialspa
dc.subject.proposalConcentraciónspa
dc.subject.proposalPM10eng
dc.subject.proposalPM2.5eng
dc.subject.proposalUrbaneng
dc.subject.proposalIndustrialeng
dc.subject.proposalConcentrationeng
dc.titleContamnación atmosférica urbana e industrial: estado de la calidad de aire y contribución de fuentes de material particulado en La Guajiraspa
dc.typeLibro
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/book
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
person.identifier.orcid0000-0002-2380-4840
person.identifier.orcid0000-0003-1313-3841
relation.isAuthorOfPublicationde45b866-e40f-4e7d-8273-097c2008e249
relation.isAuthorOfPublication09184d15-3abc-4f6c-90d7-a820b01ea742
relation.isAuthorOfPublication.latestForDiscoveryde45b866-e40f-4e7d-8273-097c2008e249

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
13. Contaminacion atmosferica -FINAL-.pdf
Tamaño:
5.42 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
15.18 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones